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Abstract
The hierarchical triple-body approximation has useful applications to a vari-
ety of systems from planetary and stellar scales to supermassive black holes.
In this approximation, the energy of each orbit is separately conserved, and
therefore the two semimajor axes are constants. On timescales much larger
than the orbital periods, the orbits exchange angular momentum, which leads
to eccentricity and orientation (i.e., inclination) oscillations. The orbits’
eccentricity can reach extreme values, leading to a nearly radial motion,
which can further evolve into short orbit periods and merging binaries. Fur-
thermore, the orbits’ mutual inclinations may change dramatically from pure
prograde to pure retrograde, leading to misalignment and a wide range of
inclinations. This dynamical behavior is coined the “eccentric Kozai-Lidov
mechanism.” The behavior of such a system is exciting, rich, and chaotic
in nature. Furthermore, these dynamics are accessible from a large part of
the triple-body parameter space and can be applied to a diverse range of
astrophysical settings and used to gain insights into many puzzles.
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1. INTRODUCTION
Triple systems are common in the Universe. They are found in many different astrophysical
settings covering a large range of mass and physical scales, such as triple stars (e.g., Tokovinin
1997, 2014a,b; Eggleton et al. 2007) and accreting compact binaries with a companion (for example,
companions to X-ray binaries; e.g., Grindlay et al. 1988, Prodan & Murray 2012). In addition,
it seems that supermassive black hole binaries and higher multiples are common, and thus any
star in their vicinity forms a triple system (e.g., Valtonen 1996, Di Matteo et al. 2005, Khan et al.
2012, Kulkarni & Loeb 2012). Furthermore, considering the Solar System, binaries composed
of near-Earth objects, asteroids, or dwarf planets (of which a substantial fraction seems to reside
in a binary configuration; e.g., Polishook & Brosch 2006, Nesvorný et al. 2011, Margot et al.
2015) naturally form a triple system with our Sun. Lastly, hot Jupiters are likely to have a faraway
companion, forming a triple system of a star–hot Jupiter binary with a distant perturber (e.g.,
Knutson et al. 2014, Ngo et al. 2015, Wang et al. 2015). Stability requirements yield that most of
these systems are hierarchical in scale, with a tight inner binary orbited by a tertiary on a wider
orbit, forming the outer binary. Therefore, in most cases the dynamical behavior of these systems
takes place on timescales much longer than the orbital periods.

The study of secular perturbations (i.e., long-term phase-averaged evolution over timescales
longer than the orbital periods) in triple systems can be dated back to Lagrange, Laplace and
Poincaré. Many years later, the study of secular hierarchical triple system was addressed by Lidov
(1961, where the English translation version was published only in 1962). He studied the orbital
evolution of artificial satellites that was caused by gravitational perturbations from an axisymmetric
outer potential. A short time after that, Kozai (1962) studied the effects of Jupiter’s gravitational
perturbations on an inclined asteroid in our own Solar System. In these settings a relatively tight
inner binary composed of a primary and a secondary (in these initial studies it was assumed to be a
test particle) is orbited by a faraway companion. We denote the inner (outer) orbit semimajor axis
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as a1 (a2). In this setting the secular approximation can be utilized. This implies that the energy
of each orbit is conserved separately (as well as is the energy of the entire system); thus, a1 and
a2 are constants during the evolution. The dynamical behavior is a result of angular momentum
exchange between the two orbits. Kozai (1962), for example, expanded the three-body Hamiltonian
in semimajor axis ratio (because the outer orbit is far away, a1/a2 is a small parameter). He then
averaged over the orbits, and lastly he truncated the expansion to the lowest order, called the
quadrupole, which is proportional to (a1/a2)2. Both Kozai (1962) and Lidov (1962) found that
the inner test particle’s inclination and eccentricity oscillate on timescales much larger than its
orbital period. In these studies the outer perturber was assumed to carry most of the angular
momentum, and thus under the assumption of an axisymmetric outer potential the inner and
outer orbits’ z-components of the angular momenta (along the total angular momentum) are
conserved. This led to large variations between the eccentricity and inclination of the test particle
orbit.

Although the Kozai-Lidov mechanism seemed interesting it was largely ignored for many years.
However, about 15–20 years ago, probably correlating with the detection of the eccentric planet
6 Cyg B (Cochran et al. 1996) or the close-to-perpendicular stellar Algol system (Eggleton et al.
1998, Baron et al. 2012), the Kozai-Lidov mechanism received its deserved attention. However,
though the mechanism seemed very promising in addressing these astrophysical phenomena, it
was limited to the narrow parts of the parameter space (favoring close-to-perpendicular initial
orientation between the two orbits; e.g., Marchal 1990, Morbidelli 2002, Valtonen & Karttunen
2006, Fabrycky & Tremaine 2007) and produced only moderate eccentricity excitations. Most of
the studies that investigated different astrophysical applications of the Kozai-Lidov mechanism
used the Kozai (1962) and Lidov (1962) test particle, axisymmetric outer orbit quadrupole-level
approximation or TPQ approximation.

This approximation has an analytical solution that describes (for initially highly inclined orbits
∼40◦–140◦; see below) the large amplitude oscillations between the inner orbit’s eccentricity
and inclination with respect to the outer orbit (e.g., Kinoshita & Nakai 1999, Morbidelli 2002).
These oscillations have well-defined maximum and minimum eccentricities and inclinations and
limit the motion to either prograde (≤90◦) or retrograde (≥90◦) with respect to the outer orbit.
The axisymmetric outer orbit quadrupole-level approximation is applicable for an ample number
of systems. For example, this approximation has appropriately described the motion of Earth’s
artificial satellites under the influence of gravitational perturbations from the moon (e.g., Lidov
1962). Other astrophysical systems for which this approximation is applicable include (but are not
limited to) the effects of the Sun’s gravitational perturbation on planetary satellites, because in this
case indeed the satellite mass is negligible compared to the other masses in the system, and the
planet’s orbit around the Sun is circular. Indeed, the axisymmetric outer orbit quadrupole-level
approximation can successfully be used to study the inclination distribution of the Jovian irregular
satellites (e.g., Carruba et al. 2002, Nesvorný et al. 2003) or in general the survival of planetary
outer satellites (e.g., Kinoshita & Nakai 1991), as well as the dynamical evolution of the orbit of
a Kuiper Belt object satellite due to perturbation from the Sun (e.g., Perets & Naoz 2009, Naoz
et al. 2010). This approximation is useful and can be applied in the limit of a circular outer orbit
and a test particle inner object.

Recently, Naoz et al. (2011, 2013a) showed that relaxing either one of these assumptions
leads to qualitatively different dynamical evolution. Considering systems beyond the test particle
approximation, or a circular orbit, requires the next level of approximation, called the octupole
level of approximation (e.g., Harrington 1968, 1969; Ford et al. 2000b; Blaes et al. 2002). This
level of approximation is proportional to (a1/a2)3. In the octupole level of approximation, the
inner orbit eccentricity can reach extremely high values and does not have a well-defined value, as
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the system is chaotic in general (Ford et al. 2000b; Naoz et al. 2013a; Teyssandier et al. 2013; Li
et al. 2014a,b). In addition, the inner orbit inclination can flip its orientation from prograde, with
respect to the total angular momentum, to retrograde (Naoz et al. 2011). We refer to this process
as the eccentric Kozai-Lidov (EKL) mechanism. We follow the literature-coined acronym “EKL”
as opposed to the more chronologically accurate acronym “ELK.”

As is discussed below the EKL mechanism taps into larger parts of the parameter space (i.e.,
beyond the ∼40◦–140◦ range) and results in a richer and far more exciting dynamical evolution.
As a consequence this mechanism is applicable to a wide range of systems that allow for eccentric
orbits or three massive bodies, from exoplanetary orbits over stellar interactions to black hole
dynamics. The prospect of forming eccentric or short-period planets through three-body interac-
tions was the source of many studies (e.g., Innanen et al. 1997; Wu & Murray 2003; Fabrycky &
Tremaine 2007; Wu et al. 2007; Veras & Ford 2010; Batygin et al. 2011; Correia et al. 2011; Naoz
et al. 2011, 2012; Petrovich 2015a,b). It also promoted many interesting applications for stellar
dynamics from stellar mergers (e.g., Perets & Fabrycky 2009, Naoz & Fabrycky 2014, Witzel et al.
2014, Stephan et al. 2016) to compact binary mergers that may prompt supernova explosions for
double white dwarf (WD) mergers (e.g., Thompson 2011, Katz & Dong 2012) or gravitational
wave (GW) emission for neutron star (NS) or black hole binary mergers (e.g., Blaes et al. 2002,
Seto 2013).

2. THE HIERARCHICAL THREE-BODY SECULAR APPROXIMATION
In the three-body approximation, dynamical stability requires that either the system has circular,
concentric, coplanar orbits or a hierarchical configuration, in which the inner binary is orbited
by a third body on a much wider orbit, the outer binary (Figure 1). In this case the secular
approximation (i.e., phase-averaged, long-term evolution) can be applied, where the interaction
between two nonresonant orbits is equivalent to treating the two orbits as massive wires (e.g.,
Marchal 1990). Here the line density is inversely proportional to orbital velocity, and the two
orbits torque each other and exchange angular momentum but not energy. Therefore the orbits
can change shape and orientation (on timescales much longer than their orbital periods) but not
semimajor axes of the orbits. The gravitational potential is then expanded in a semimajor axis ratio
of a1/a2, where a1 (a2) is the semimajor axis of the inner (outer) body (Kozai 1962, Lidov 1962).
This ratio is a small parameter due to the hierarchical configuration.

The hierarchical three-body system consists of a tight binary (m1 and m2) and a third body
(m3). We define rin to be the relative position vector from m1 to m2 and rout the position vector
of m3 relative to the center of mass of the inner binary (see Figure 1). Using this coordinate
system, the dominant motion of the triple can be reduced to two separate Keplerian orbits: the
first describes the relative tight orbit of bodies 1 and 2, and the second describes the wide orbit
of body 3 around the center of mass of bodies 1 and 2. The Hamiltonian for the system can be
decomposed accordingly into two Keplerian Hamiltonians plus a coupling term that describes the
(weak) interaction between the two orbits. Let the semimajor axes of the inner and outer orbits be
a1 and a2, respectively. Then the coupling term in the complete Hamiltonian can be written as a
power series in the ratio of the semimajor axes, α = a1/a2 (e.g., Harrington 1968). In a hierarchical
system, by definition, this parameter α is small.

The complete Hamiltonian expanded in orders of α is (e.g., Harrington 1968)

H = k2m1m2

2a1
+ k2m3(m1 + m2)

2a2
+ k2

rout

n=∞∑

n=2

(
rin

rout

)n

M n Pn(cos"), (1)
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m3

m2

m1

itot

rout Gtot

Invariable plane

G2

G1

i1

i2

rin

c.m.

Φ

itot

a b

Figure 1
Schematic description of the coordinate system and the angles used (not to scale). (a) The three bodies and
the relative vectors. Here “c.m.” denotes the center of mass of the inner binary, containing objects of masses
m1 and m2. The separation vector rin points from m1 to m2; rout points from the c.m. to m3. The angle
between the vectors rin and rout is ". (b) Geometry of the angular momentum vectors and the definition of
the relevant inclination angles. We show the total angular momentum vector (Gtot), the angular momentum
vector of the inner orbit (G1) with inclination i1 with respect to Gtot and the angular momentum vector of
the outer orbit (G2) with inclination i2 with respect to Gtot. The angle between G1 and G2 defines the
mutual inclination itot = i1 + i2. The invariable plane is perpendicular to Gtot; in other words, the z axis is
parallel to Gtot.

and in terms of the semimajor axes a1 and a2, we have

H = k2m1m2

2a1
+ k2m3(m1 + m2)

2a2
+ k2

a2

∞∑

n=2

(
a1

a2

)n

M n

(
rin

a1

)n ( a2

rout

)n+1

Pn(cos"), (2)

where k2 is the gravitational constant, Pn are Legendre polynomials, " is the angle between rin

and rout (see Figure 1), and

M n = m1m2m3
mn−1

1 − (−m2)n−1

(m1 + m2)n . (3)

The right term of Equation 2 is often called the perturbing function as it describes the gravitational
perturbations between the two orbits. The two left terms in Equation 2 are simply the energy of
the inner and outer Kepler orbits. Note that the sign convention for this Hamiltonian is positive.

The frame of reference chosen throughout this review is the invariable plane for which the z
axis is set along the total angular momentum, which is conserved during the secular evolution of
the system (see Figure 1) (e.g., Lidov & Ziglin 1974). Another description used in the literature
is the vectorial form (e.g. Katz et al. 2011, Boué & Fabrycky 2014a), which has been proven useful
for addressing different astrophysical settings. Considering the invariable plane it is convenient to
adopt the canonical variables known as Delaunay’s elements (e.g., Valtonen & Karttunen 2006).
These describe for each orbit three angles and three conjugate momenta.

www.annualreviews.org • The EKL Effect and Its Applications 445

A
nn

u.
 R

ev
. A

str
on

. A
str

op
hy

s. 
20

16
.5

4:
44

1-
48

9.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 - 
Lo

s A
ng

el
es

 U
CL

A
 o

n 
10

/1
0/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



AA54CH12-Naoz ARI 25 August 2016 19:46

The first set of angles are the mean anomalies, M 1 and M 2 (also often denoted in the literature
as l1 and l2), which describe the position of the object in their orbit. Their conjugate momenta are

L1 = m1m2

m1 + m2

√
k2(m1 + m2)a1, (4)

L2 = m3(m1 + m2)
m1 + m2 + m3

√
k2(m1 + m2 + m3)a2,

where subscripts 1 and 2 denote the inner and outer orbits, respectively. The second set of an-
gles are the arguments of periastron, ω1 and ω2 (g1 and g2), which describe the position of the
eccentricity vector (in the plane of the ellipse). Their conjugate momenta are the magnitude of
the angular momenta vector of each orbit G1 and G2 (often used as J1 and J2):

G1 = L1

√
1 − e2

1, G2 = L2

√
1 − e2

2, (5)

where e1 (e2) is the inner (outer) orbit eccentricity. The last set of angles are the longitudes of
ascending nodes, $1 and $2 (h1 and h2). Their conjugate momenta are

H 1 = G1 cos i1, H 2 = G2 cos i2, (6)

often denoted as J1,z and J2,z. Note that G1 and G2 are the magnitudes of the angular momentum
vectors (G1 and G2), and H 1 and H 2 are the z-components of these vectors (recall that the z axis is
chosen to be along the total angular momentum Gtot). In Figure 1, we show the configuration of
the angular momentum vectors of the inner and outer orbit (G1 and G2, respectively), and H 1 and
H 2 are the z-components of these vectors, where the z axis is chosen to be along the total angular
momentum Gtot. This conservation of the total angular momentum Gtot yields a simple relation
between the z-component of the angular momenta and the total angular momentum magnitude:

Gtot = H 1 + H 2. (7)

The equations of motion are given by the canonical relations (for these equations, we use the
l, g, h notation):

dL j

dt
= ∂H
∂l j

,
dl j

dt
= − ∂H

∂L j
, (8)

dG j

dt
= ∂H
∂g j

,
dg j

dt
= − ∂H

∂G j
, (9)

dH j

dt
= ∂H
∂h j

,
dh j

dt
= − ∂H

∂H j
, (10)

where j = 1, 2. Note that these canonical relations have the opposite sign relative to the
usual relations (e.g., Goldstein 1950) because of the sign convention typically chosen for this
Hamiltonian.

As apparent from the Hamiltonian Equation 2, if the semimajor axis ratio is indeed a small
parameter, then for the zeroth approximation each orbit can be described as a Keplerian orbit for
which its energy is conserved. Thus, we can average over the short timescale and focus on the
long-term dynamics of the triple system. This process is known as the secular approximation, in
which the energy (semimajor axis) is conserved, and the orbits exchange angular momentum. The
short timescale’s terms in the Hamiltonian depend on l1 and l2, and eliminating them is done via a
canonical transformation. The technique used is known as the von Zeipel transformation (Brouwer
1959). In this canonical transformation, a time-independent-generating function is defined to be
periodic in l1 and l2, which allows the elimination of the short-period terms in the Hamiltonian;
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the details of this procedure are described by Naoz et al. (2013a, their appendix A2). Eliminating
these angles from the Hamiltonian means that their conjugate momenta L1 and L2 are conserved
(see Equation 8), thus yielding a1 = Const. and a2 = Const., as expected. In the most general
case of this three-body secular approximation there are only two parameters that are conserved,
i.e., the energy of the system (which also means that the energy of the inner and the outer orbits
are conserved separately) and the total angular momentum Gtot.

The time evolution for the eccentricity and inclination of the system can easily be achieved
from Equations 8–10:

de j

dt
= ∂e j

∂G j

∂H
∂g j

, (11)

and
d(cos i j )

dt
= Ḣ j

G j
− Ġ j

G j
cos i j , (12)

where j = 1 and 2 for the inner and outer orbits, respectively. See the full set of the equa-
tions of motion in Equations 78–84 (see Supplemental Text 1: The Secular Equations;
follow the Supplemental Material link from the Annual Reviews home page at http://www.
annualreviews.org).

The lowest order of approximation, which is proportional to (a1/a2)2, is called the quadrupole
level, and we find that an artifact of the averaging process results in conservation of the outer
orbit angular momentum G2; in other words the system is symmetric for the rotation of the outer
orbit. This was coined the “happy coincidence” by Lidov & Ziglin (1976, p. 475). Its significant
consequence is that the this approximation should be used only for an axisymmetric outer potential
such as circular outer orbits (Naoz et al. 2013a).

The next level of approximation, the octupole, is proportional to (a1/a2)e2/(1− e2
2) (see below),

and thus the TPQ approximation can be successfully applied when this parameter is small for
low inclinations (see below for numerical studies). However, close-to-perpendicular systems are
extremely sensitive to this parameter.

A popular procedure that was done in earlier studies (e.g., Kozai 1962) used “elimination of
nodes” (e.g., Jefferys & Moser 1966, p. 570). This describes the a simplification of the Hamiltonian
by setting

h1 − h2 = π. (13)

This relation holds in the invariable plane when the total angular momentum is conserved, such
as in our case. Some studies that exploited explicitly this relation in the Hamiltonian incorrectly
concluded (using Equation 10) that the z-components of the orbital angular momenta are always
constant. As shown by Naoz et al. (2011, 2013a), this leads to qualitatively different evolution for
the triple-body system. We can still use the Hamiltonian with the nodes eliminated, instead of
using the canonical relations, as long as the equations of motion for the inclinations are derived
from the total angular momentum conservation (Naoz et al. 2013a).

2.1. Physical Picture
Considering the quadrupole level of approximation (which is valid for axisymmetric outer orbit
potential) for an inner test particle (either m1 or m2 goes to zero), the conserved quantities are the
energy and the z-component of the angular momentum. In other words the Hamiltonian does
not depend on longitude of acceding nodes (h1, also denoted as $1), and thus the z-component
of the inner orbit angular momentum, H 1, is conserved and the system is integrable. In this case
the equal precession rate of the inner orbit’s longitude of ascending nodes ($1) and the longitude
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of the periapsis (ϖ = $1 + ω1) mean that an eccentric inner orbit feels an accumulating effect on
the orbit. The resonant angle, ω1 = ϖ1 − $1, will librate around 0◦ or 180◦, which causes large
amplitude eccentricity oscillations of the inner orbit.

In that case (circular outer orbit, in the test particle approximation, i.e., TPQ approximation)
the conservation of the z-component of the angular momentum jz =

√
1 − e2

1 cos itot = Const.
yields oscillations between the eccentricity and inclination. The inner orbit is more eccentric for
smaller inclinations and less eccentric for larger inclinations.

2.2. Circular Outer Body
In this case the gravitational potential set by the outer orbit is axisymmetric, and thus the
quadrupole level of approximation describes the behavior of the hierarchical system well. We
consider two possibilities: In the first, one of the members of the inner orbit is a test particle (i.e.,
either m1 or m2 is zero). In the second, we allow for all three masses to be nonnegligible.

2.2.1. Axisymmetric potential and inner test particle, test particle quadrupole. Following
Lithwick & Naoz (2011), we call this case the TPQ approximation. Without loss of generality,
we take m2 → 0; the Hamiltonian of this system is very simple and can be written as

H = 3
8

k2 m1m3

a2

(
a1

a2

)2 1
(1 − e2

2)3/2
Fquad, (14)

where

Fquad = − e2
1

2
+ θ2 + 3

2
e2

1θ
2 + 5

2
e2

1(1 − θ2) cos(2ω1), (15)

where θ = cos itot (e.g., Yokoyama et al. 2003, Lithwick & Naoz 2011); note that, unlike the
Hamiltonian that is presented in the next section (Equation 22), this Hamiltonian only describes
the test particle.

At this physical setting the octupole level of approximation is zero, and the inner orbit’s angular
momentum along the z axis is conserved (H 1 ∝ jz,1 =

√
1 − e2

1 cos itot = Const., where jz,1 is
the specific z-component of the angular momentum). Because both H 1 and Fquad are conserved,
a new constant of motion can be defined. It is convenient (for reasons that will be identified in
Section 2.3.1) to define the following constant (Katz et al. 2011):

CKL =
Fquad

2
− 1

2
j 2
z,1 = e2

(
1 − 5

2
sin i2

tot sinω2
1

)
, (16)

which is a simple function of the initial conditions. The system is integrable and has well-defined
maximum and minimum eccentricities and inclinations. To find the extreme points, we set ė1 = 0
in the time-evolution equation (see Equation 77, quadrupole part, in Supplemental Text 1: The
Secular Equations) and find that the values of the argument of periapsis that satisfy this condition
are ω1 = 0+nπ/2, where n = 0, 1, 2, . . . . Thus, the resonant angle has two classes of trajectories,
librating and circulating. On circulating trajectories, at ω1 = 0, the eccentricity is smallest and the
inclination is largest, and vice versa for ω1 = π/2. In Figure 2, librating trajectories (or libration
modes) are associated with bound oscillations of ω1, and circulating trajectories (or circulation
modes) are not constrained to a specific regime. The separatrix is the trajectory that separates the
two modes of behavior, as we elaborate below.

The conservation of jz,1 implies

jz,1 =
√

1 − e2
1,max/min cos i1,min/max =

√
1 − e2

1,0 cos i1,0, (17)
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jz = 0.2

F = 0.36F = 0.36

F = 0.36F = 0.36

F = 0.36F = 0.36

F = 0.36F = 0.36

F = 0.04

F = 0.04

1

–1 0 1

0.5θ

ω/π
–1 0 1

ω/π

0

0.5e

0

jz = 0.6

Librating

Circulating

√3/5
aa bb

cc dd

Figure 2
Cross section trajectory of the test particle quadrupole in the (a,b) θ − ω1 and (c,d ) e1 − ω1 planes. We define
θ = cos itot. The dashed horizontal lines in panels a and b show the critical inclination for which θ =

√
3/5.

The separatrix is associated with e1 = 0 for ω1 = 0 and θ =
√

3/5 for ω1 = π/2, as depicted in the figure.
Panels a and c show the case for jz = 0.2 and FTP

quad = −1.44 and −0.64 (librating) and FTP
quad = 0.04, 0.36, 1,

and 1.44 (circulating). Panels b and d show the case for jz = 0.6 and FTP
quad = 0.25 (librating) and

FTP
quad = 0.36, 0.64 and 1 (circulating). Figure adapted from Lithwick & Naoz (2011) with permission.

where e1,0 and i1,0 are the initial values. Note that in this case (TPQ) i1 = itot. Because the energy
is also conserved, plugging in ω1 = 0 for the circulating mode, we find

E0 = 2e2
1,min − 2 + (1 − e2

1,min) cos i2
max, (18)

and for ω1 = ±π/2 in Equation 15, we find

E0 = −3e2
1,max + (1 − 4e2

1,max) cos i2
min, (19)

where E0 represents the initial conditions plugged into Equation 15. From Equations 17 and 18
one can easily find the minimum eccentricity and maximum inclination; likewise from Equations 17
and 19, the maximum eccentricity and the minimum inclination. A special and useful case is found
by setting initially e1,0 = 0 and ω1,0 = 0; for this case the maximum eccentricity is

emax =
√

1 − 5
3

cos2 i0. (20)

Solving the equations for cos imin instead, we can find

cos imin = ±
√

3
5
, (21)

which gives imin = 39.2◦ and imin = 140.77◦, known as Kozai angles. These angles represent the
regime in which large eccentricity and inclination oscillations are expected to take place. The
value cos imin = ±

√
3/5 marks the separatrix depicted in Figure 2.
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2.2.2. Axisymmetric potential beyond the test particle approximation. In this case, we still
keep the outer orbit circular; thus, the quadrupole level of approximation is still valid, but we relax
the test particle approximation. The quadrupole-level Hamiltonian can be written as

Hquad = C2[
(
2 + 3e2

1
) (

3 cos2 itot − 1
)
+ 15e2

1 sin2 itot cos(2ω1)], (22)

where

C2 = k4

16
(m1 + m2)7

(m1 + m2 + m3)3

m7
3

(m1m2)3

L4
1

L3
2G3

2
. (23)

Note that in this form of Hamiltonian the nodes ($1 and$2) have been eliminated, allowing for a
cleaner format; however, this does not mean that the z-component of the inner and outer angular
momenta are constants of motion (as explained in Naoz et al. 2011, 2013a).

Relaxing the test particle approximation (i.e., none of the masses have insignificant mass)
already allows for deviations from the nominal TPQ behavior. This is because now jz,1 is no longer
conserved and instead the total angular momentum is conserved. Note that the outer potential is
axisymmetric and G2 = Const. The system is still integrable and has well-defined maxima and
minima for the eccentricity and inclination. The conservation of the total angular momentum,
i.e., G1 + G2 = Gtot, sets the relation between the maximum/minimum total inclinations and
inner orbit eccentricities.

L2
1
(
1 − e2

1
)
+ 2L1 L2

√
1 − e2

1

√
1 − e2

2 cos itot = G2
tot − G2

2. (24)

Note that in the quadrupole-level approximation G2, and thus e2, is constant. The right-hand
side of the above equation is set by the initial conditions. In addition, L1 and L2 (see Equations 4
and 5) are also set by the initial conditions. Using conservation of energy, we can write, for the
minimum eccentricity/maximum inclination case (i.e., setting ω1 = 0),

Hquad

2C2
= 3 cos2 itot,max

(
1 − e2

1,min
)
− 1 + 6e2

1,min. (25)

The left-hand side of this equation, and the remainder of the parameters in Equation 24, are
determined by the initial conditions. Thus solving Equation 25 together with Equation 24 gives the
minimum eccentricity/maximum inclination during the system evolution as a function of the initial
conditions. We find a similar equation if we set ω1 = π/2 for the maximum eccentricity/minimum
inclination:

Hquad

2C2
= 3 cos2 itot,min(1 + 4e2

1,max) − 1 − 9e2
1,max. (26)

Equations 24 and 26 give a simple relation between the total minimum inclination and the maxi-
mum inner eccentricity as a function of the initial conditions.

An interesting consequence of this physical picture is if the inner binary members are more
massive than the third object. We adopt this example from Naoz et al. (2013a) and consider the
triple system PSR B1620−26. The inner binary contains a millisecond radio pulsar of m1 = 1.4 M⊙

and a companion of m2 = 0.3 M⊙ (e.g., McKenna & Lyne 1988). We adopt parameters for the
outer perturber of m3 = 0.01 M⊙ (Ford et al. 2000a) and set e2 = 0 (see the caption of Figure 3 for
a full description of the initial conditions). Note that Ford et al. (2000a) found e2 = 0.45, which
means that the quadrupole level of approximation is insufficient to represent the behavior of the
system. We choose, however, to set e2 = 0 to emphasize the point that even an axisymmetric outer
potential may result in a qualitatively different behavior if the TPQ approximation is assumed.
For the same reason, we also adopt a higher initial value for the inner orbit eccentricity (e1 = 0.5
compared to the measured one, e1 ∼ 0.045). The time evolution of the system is shown in Figure 3.
In this figure, we compare the z-component of the angular momentum H 1 with L1

√
1 − e2

1 cos itot,
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b

c

Figure 3
Comparison between the test particle quadrupole (TPQ) formalism (dashed blue lines) and the full quadrupole
calculation (solid red lines). The system has an inner binary with m1 = 1.4 M⊙ and m2 = 0.3 M⊙, and the
outer body has mass m3 = 0.01 M⊙. The orbit separations are a1 = 5 AU and a2 = 50 AU. The system was
set initially with e1 = 0.5 and e2 = 0, ω1 = 120◦ and ω2 = 0, and relative inclination itot = 70◦. The panels

show (a) the mutual inclination itot, (b) e1, and (c)
√

1 − e2
1 cos itot, which in the TPQ formalism is constant

(blue dashed line). The green dotted line in panel a represents the 90◦ line. Figure adapted from Naoz et al.
(2013a) with permission (note that in the panel b y-axis, 1 − e1 is a correction over that which appeared in the
original).

which is the angular momentum that would be inferred if the outer orbit were instantaneously in
the invariable plane, as is found in the TPQ formalism.

Taking the outer body to be much smaller than the inner binary (i.e., m3 < m1, m2), as done in
Figure 3, yields yet another interesting consequence for relaxing the test particle approximation.
In some cases large eccentricity excitations can take place for inclinations that largely deviate from
the nominal range of the Kozai angles of 39.2◦–140.77◦. The limiting mutual inclination that
can result in large eccentricity excitations can be easily found when solving Equations 24 and 26,
because they depend on mutual inclination, as noted by Martin & Triaud (2015b). This evolution
is shown in Figure 4, where large eccentricity oscillation for the inner binary is achieved for an
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Figure 4
Small-mass outer perturber that induces large eccentricity excitation away from the nominal range of the
Kozai angles of 39.2◦–140.77◦. We consider m1 = 1 M⊙, m2 = 0.5 M⊙, m3 = 0.05 M⊙, a1 = 0.5 AU, and
a2 = 5 AU. Both outer and inner eccentricities are set initially to zero, and also set initially are ω1 = 90◦ and
ω2 = 0◦. We show two examples: The first shows the eccentricity excitations for as expected initial mutual
inclination of itot = 90◦, where in this case i1 = 25.01◦ and i2 = 64.99◦. This produces eccentricity
excitation with e1,max = 0.689. We also consider an example for which the mutual inclination is set initially
to be itot = 158◦. In this case i1 = 17.12◦ and i2 = 140.88◦. The latter parameters are adapted from Martin
& Triaud (2015b), which leads to maximum inner eccentricity of e1,max = 0.99. Note that in both examples
i2 is close to the nominal Kozai angles range.

initial mutual inclination of 158◦. This behavior, as expected from the equations, is sensitive to
the eccentricity of the outer orbit.

In the circular outer orbit case, the regular oscillations of the eccentricity and inclination yield
a well-defined associated timescale. This can be easily achieved by considering the equation of
motion of the argument of periapsis ω1 (see the part that is proportional to C2 in Equation 73
in Supplemental Text 1: The Secular Equations). More precisely, tquad ∼ G1/C2, where C2 is
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given in Equation 23. Integrating between the well-defined maximum and minimum eccentricities,
Antognini (2015) found a numerical factor 16/15, and got

tquad ∼ 16
15

a3
2
(
1 − e2

2
)3/2 √

m1 + m2

a3/2
1 m3k

= 16
30π

m1 + m2 + m3

m3

P2
2

P1

(
1 − e2

2
)3/2

. (27)

This timescale is in good agreement with the numerical evolution.

2.3. Eccentric Outer Orbit
Eccentric orbits are pervasive in nature. For example, the eccentricity distribution of binary stars
in the field is observed to be uniform (e.g., Raghavan et al. 2010) and is estimated as thermal
for young stellar clusters (e.g., Kroupa 1995). Furthermore, the eccentricity distribution of stars
around the supermassive black hole in the galactic center is estimated even steeper than thermal
(e.g., Gillessen et al. 2009). Thus, relaxing the circular orbit assumption will allow for wider
possibility of applications.

2.3.1. Inner orbit’s test particle approximation. In this approximation, we allow for an ec-
centric outer orbit but restrict ourselves to taking the mass of one of the inner members to zero,
which yields i1 = itot. In the test particle limit, the outer orbit is stationary and the system reduces
to two degrees of freedom. The eccentric outer orbit yields the quadrupole level of approximation
inadequate, and thus we consider the test particle octupole (TPO) level here. This approximation
is extremely useful in gaining an overall understanding of the general hierarchical system and the
EKL mechanism. The Hamiltonian H TP of this system is very simple and can be written as (e.g.,
Lithwick & Naoz 2011),

HTP = 3
8

k2 m1m3

a2

(
a1

a2

)2 1
(1 − e2

2)3/2

(
Fquad + ϵFoct

)
, (28)

where

ϵ = a1

a2

e2

1 − e2
2
. (29)

Fquad is defined in Equation 15, and we reiterate it here for completeness,

Fquad = − e2
1

2
+ θ2 + 3

2
e2

1θ
2 + 5

2
e2

1(1 − θ2) cos(2ω1), (30)

and

Foct = 5
16

(
e1 + 3e3

1

4

)
[(1 − 11θ − 5θ2 + 15θ3) cos(ω1 −$1) + (1 + 11θ − 5θ2 − 15θ3) cos(ω1 +$1)]

−175
64

e3
1[(1 − θ − θ2 + θ3) cos(3ω1 −$1) + (1 + θ − θ2 − θ3) cos(3ω1 +$1)]. (31)

In this case the z-component of the outer orbit is not conserved, and the system can flip from
itot < 90◦ to itot > 90◦ (Naoz et al. 2011, 2013a). The flip is associated with an extremely high
eccentricity transition (see, for example, Figure 5). The octupole level of approximation introduces
higher-order resonances that overall render the system to be qualitatively different from a system
at which the quadrupole level of approximation is applicable. We begin by reviewing the different
effects in the systems that can be divided into two main initial inclination regimes.
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Figure 5
Time evolution example of the test particle octupole (TPO) approximation (red lines) and the test particle
quadrupole (TPQ) approximation (blue lines). Panels a and c show high-inclination (i > 39.2◦) flip, whereas
panels b and d show low-inclination (i < 39.2◦) flip (high inclination i > 39.2 , low inclination i < 39.2). In
this example, we consider the time evolution of a test particle at 135 AU around a 104-M⊙ intermediate
black hole located 0.03 pc from the massive black hole in the center of our galaxy (4 × 106 M⊙). In panels a
and c the system initially is set with e1 = 0.01, e2 = 0.7, i = 60◦, $1 = 60◦, and ω1 = 0◦. In panels b and d
the system is initially set with e1 = 0.85, e2 = 0.85, i = 1◦, $1 = 180◦, and ω1 = 0◦. In panels a and b, we
show the inclination, and in panels c and d the inner orbit eccentricity as 1 − e1.

2.3.1.1. High initial inclination regime and chaos. When the system begins in a high-inclination
regime 39.2◦ ≤ itot ≤ 140.7◦, the resonance arising from the quadrupole level of approximation
can cause large inclination and eccentricity amplitude modulations. Recall that this angle range is
associated with the TPQ separatrix. The octupole level of approximation is associated with high-
order resonances that result in extremely large eccentricity peaks and flips (see Figure 5) as well
as chaotic behavior (as explained below). As can be seen from Equation 31, these resonances arise
from higher-order harmonics of the octupole-level Hamiltonian: ω1 ±$1 and 3ω1 ±$1. A useful
tool to analyze this system is in the form of surface of section (see, for example, Figure 6). For a
two-degrees-of-freedom system, the surface of section projects a four-dimensional trajectory on a
two-dimensional surface. The resonant regions are associated with fixed points, and chaotic zones
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Figure 6
Surface of section for Fquad + ϵFoct = −0.1 and ϵ = 0.1. This initial configuration is associated with high
initial inclination itot,0 > 39.2◦. The quadrupole-level resonances can clearly be seen (the big islands) as can
the emergence of high-order resonances (the small islands). Adapted from Li et al. (2014a) with permission.

are a result of the overlap of the resonances between the quadrupole and the octupole resonances
(Chirikov 1979, Murray & Holman 1997).

Figure 6 shows the surface of section for ϵ = 0.1 and Fquad + ϵFoct = −0.1, which is associated
with high initial inclination, itot,0 > 39.2◦. In this figure, we can identify three distinct regions:
resonant regions, circulation regions, and chaotic regions. The resonant regions are associated
with trajectories of which the momenta ( j and jz) and the angles (ω1 and $1) undergo bound
oscillations. The system is classified in a liberation mode, and the trajectories are quasi-periodic.
The libration zones in the TPQ approximation are shown in Figure 2, and for the TPO in Fig-
ure 6. The circulation regions describe trajectories for which the coordinates are not constrained
to a specific interval and can take any value. Note that both resonant and circulatory trajectories
map onto a one-dimensional manifold on the surface of section. On the contrary, chaotic trajec-
tories map onto a two-dimensional manifold. In other words, though quasi-periodic trajectories
form lines on the surface of section, chaotic trajectories are area-filling regimes. Embedded in the
chaotic region, the small islands correspond to the higher, octupole order resonances, which are
also quasi-periodic. The flip from itot < 90◦ to itot > 90◦ covers large parts of the parameter space
as can be seen in Figure 7c.

In some cases an analytical condition for the flip can be achieved by averaging over a quadrupole
cycle (Katz et al. 2011). This averaging process yields a constant of motion

χ = f (CKL) + ϵ
cos itot sin$1 sinω1 − cosω1 cos$1√

1 − sin2 ıtot sin2 ω1
= Const., (32)

where the function f (CKL) is defined by

f (CKL) = 32
√

3
π

∫ 1

xmin

K (x) − 2E(x)
(41x − 21)

√
2x + 3

dx and xmin = 3 − 3CKL

3 + 2CKL
, (33)
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a   Katz et al. (2011)

c   Li et al. (2014b)

b   Є = 0.01
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Figure 7
High-inclination flip parameter space. (a,b) The comparison with the analytical conditions derived by Katz et al. (2011). Open circles
are the result of a numerical integration (red indicates systems that flipped and blue is for those that did not). Here the solid lines
represent the flip conditions that for e1,0 ∼ 0 and itot,0 ∼> 61.7◦ are reduced to Equation 33. Panel b shows the case of ϵ = 0.01, and
note that it shows only part of the parameter space. (c) The results of numerical integrated systems associated maximum eccentricity
(color coded as 1 − e1) in the itot,0 − e1,0 parameter space for ϵ = 0.03, after 30tquad. Systems above the black line are flipped. Panels a
and b are adapted from Katz et al. (2011) and panel c from Li et al. (2014b) with permission.

where K (x) and E(x) are the complete elliptic functions of the first and second kind, respectively.
For high initial inclination a flipping critical value for the octupole prefactor ϵc is a function of
the initial inclination and the approximations take a simple form:

ϵc = 1
2

max|+ f (y)|, (34)

where + f (y) = f (y) − f (CKL,0), CKL was defined in Equation 16, and the subscript “0” marks
the initial conditions. We note that CKL in this TPO case is no longer constant (unlike the TPQ
case). The parameter y has the range CKL,0 < y < CKL,0 + (1 − e2

1,0) cos itot,0/2. For cases where
e1,0 ≪ 1, i.e., CKL ≪ 1 and itot,0 ∼> 61.7◦, Equation 34 takes a simple form:

ϵc = 1
2

f
(

1
2

cos2 itot,0

)
. (35)

This approximation is valid for ϵ ∼< 0.025. The validity of this approximation for different initial
values of e1 and itot is shown in Figure 7a,b.

A timescale for the high-inclination oscillation or flip is difficult to quantify because the evo-
lution is chaotic. Furthermore, numerically it seems that the timescale for the first flip depends
on the inclination (as can be seen in Figure 8). However, an approximate analytical condition,
for the regular (nonchaotic) mode was achieved recently by Antognini (2015), following the Katz
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et al. (2011) formalism. This timescale has the following functional form:

tflip = 256
√

10
15πϵ

∫ CKL,max

CKL,min

dCKL K (x)
√

2(4φquad/3 + 1/6 + CKL)(4 − 11CKL)
√

6 + 4CKL

×
{

1 − [χ − f (CKL)]2

ϵ2

}−1/2

, (36)

where

φquad = 1
8
(
3Fquad − 1

)
, (37)

and note that φq defined by Antognini (2015) is simply φq = CKL + j 2
z,1/2 = 4φquad/3− j 2

z,1/2+1/6
in the notation used here. The upper limit of the integral in Equation 36 is easy to find, because
for itot → 90◦ the z-component of the angular momentum is zero; thus,

CKL,max = 4
3
φquad + 1

6
, (38)

and the minimum limit of the integral is found from solving f (CKL,min) = χ ± ϵ. This timescale
takes a simple form, for setting initially e1 → 0,ω1 → 0, and itot → 90◦:

tflip ∼ 128
15π

a3
2

a3/2
1

√m1

km3

√
10
ϵ

(1 − e2)3/2 for e1,0 ∼ 0 and itot ∼ 90◦. (39)

In the TPO level of approximation the short (quadrupole) timescales differ from the associated
timescale at the TPQ level. In other words following the evolution of the same system, once
by using the TPO and once using the TPQ, yields different timescales, as depicted in the inset
of Figure 8. This is because the Hamiltonian (i.e., the energy) is slightly different as the TPO
includes the octupole term. Thus, the two calculations sample somewhat different values of the
system energy. The difference is within a factor of a few as it represents the range of the phase
space away from the separatrix (see Figure 2 for the different oscillations’ amplitudes for the given
initial different energies).

2.3.1.2. Low initial inclination regime. The octupole level of approximation yields an interesting
behavior even beyond the Kozai angles. This is a result of the octupole-level harmonics, i.e.,ω±$
and 3ω ± $. Because the low-order resonances are missing, the coplaner flip is not associated
with chaotic behavior. Figure 9 shows the surface of section for two low-inclination examples,
specifically Fquad + ϵFoct = −2 and Fquad + ϵFoct = −1 for ϵ = 0.1.

As can be seen from Figure 5 (as well as Figures 6 and 9) the two inclination regimes exhibit
qualitative differences. The high-inclination flip is driven by the quadrupole-level resonance, and
the actual flip arises by accumulating effects from the high-order resonances. Furthermore, this
flip, most times, is associated with a chaotic behavior (Lithwick & Naoz 2011, Li et al. 2014a).
However, the low-inclination flip is due to a regular trajectory. In addition, this flip takes place
on a much shorter timescale than the high-inclination flip.

Similar to the analytical approximation for the high-inclination flip conditions, Li et al. (2014b)
achieved an analytical condition for the low-inclination flip after averaging over the flip timescale

ϵc >
8
5

1 − e2
1

7 − e1(4 + 3e2
1) cos(ω1 +$1)

. (40)

Comparing this condition with the high-inclination condition of Equation 34 also emphasizes the
qualitative difference between these two regimes.
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Figure 8
Flip timescales. We consider the following supermassive black hole binary system m1 = 107 M⊙ with m3 = 109 M⊙ (note that in this
case m2 → 0). The other parameters of this system include the following: a1 = 0.05 pc, a2 = 1 pc, and e2 = 0.7. The system is set
initially with ω1 = 51◦, $1 = 165.58◦, and e1 = 0.01 for panels a and c and e1 = 0.9 for panels b and d. The initial inclinations
considered are colored in the figure. Note the difference in flip timescale as a function of initial inclinations. In the inset in panel c, we
show the inner orbit eccentricity e1 as a function of time for the test particle quadrupole (TPQ; maroon line) and the test particle
octupole (TPO; chartreuse line) for the initial setting of e1 = 0.01 and itot = 80◦ case, which emphasizes the different short (quadrupole)
timescales between the TPQ and TPO levels of approximation.

The low-inclination regime yields a flip timescale that can be easily found by setting itot → 0.
Li et al. (2014b) found an expression for the flip timescale:

tflip =
(∫ emin

e1,0

+
∫ emax

emin

)
−8

5(4 + 3e2
1)

{

ϵ
(
1 − e2

1
)
[

1 −
(F 0

quad + ϵF 0
oct − 8e2

1)2

25e2
1(4 + 3e2

1)2ϵ2

]}−1/2

, (41)
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Figure 9
Surface of section for Fquad + ϵFoct = −2 and Fquad + ϵFoct = −1 for ϵ = 0.1; this is associated with low initial inclination
itot,0 < 39.2◦. Adapted from Li et al. (2014a) with permission. See similar plots by Petrovich (2015b), reproducing this analysis.

where e1,0 is the initial inner orbit eccentricity and F 0
quad + ϵF 0

oct is the energy that corresponds
to itot = 0 and the rest of the initial conditions (see Figure 10). The reason for the two integrals
is because if initially sin(ω1 + $1) > 1, then the inner orbit eccentricity, e1, decreases before it
increases; otherwise if sin(ω1 +$1) < 1, then emin = e1,0.

2.3.2. Beyond the test particle approximation. Relaxing the test particle approximation leads
to some qualitative differences. The first is that now one of the inner bodies can torque the outer
body and thus suppress the flip. This also causes a shift in the parameter space of the flip condition
and the extreme eccentricity achieved compared to the TPQ case (see Figure 11). Although
the value of the maximum of e1 is similar to that in the TPQ case, large eccentricity excitations
may take place in different parts of the parameter space (compare Figure 11 with Figure 7). In
particular, in the high-inclination regime, the flips and the large eccentricity excitations of the
TPQ case are concentrated around itot = 90◦, but in the full case they can shift to lower mutual
inclinations and tap into a larger range of inclinations (Figure 11). This is mainly because the
outer orbit is being torqued by the inner orbit. Teyssandier et al. (2013) studied the effect of a
companion with similar mass and showed that if the outer body mass is reduced to below twice
the smallest mass of the inner orbit, the flip and large eccentricity excitations are suppressed for
large parts of the parameter space.

The system’s Hamiltonian is (here again, the nodes were eliminated for simplicity, but the
z-component of the angular momenta are not conserved)

H = Hquad + Hoct, (42)

where Hquad is defined in Equation 22, and we copy it here for completeness:

Hquad = C2[
(
2 + 3e2

1
) (

3 cos2 itot − 1
)
+ 15e2

1 sin2 itot cos(2ω1)]; (43)

the octupole-level approximation is

Hoct = C3e1e2[Acosφ + 10 cos itot sin2 itot(1 − e2
1) sinω1 sinω2],
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Figure 10
Low-inclination flip criterion. Comparison between the analytical expression Equation 41 (solid line) and
numerical integration ( green crosses mark no flip after 104tquad, and blue crosses systems that flipped). The
system’s parameters are: m1 = 1 M⊙, m2 → 0, m3 = 0.1 M⊙, a1 = 1 AU, and a2 = 45.7 AU. The outer orbit
eccentricity e2 was changed to match the ϵ values indicated on the vertical axis. The system was initially set
with itot = 5◦, ω1 = 0◦, $1 = 180◦ and e1 as indicated in the figure. Figure adapted from Li et al. (2014b).

where

C3 = −15
16

k4

4
(m1 + m2)9

(m1 + m2 + m3)4

m9
3(m1 − m2)
(m1m2)5

L6
1

L3
2G5

2

= −C2
15
4
ϵM

e2
, (44)

ϵM = m1 − m2

m1 + m2

a1

a2

e2

1 − e2
2
, (45)

and

A = 4 + 3e2
1 − 5

2
B sin i2

tot, (46)

where

B = 2 + 5e2
1 − 7e2

1 cos(2ω1), (47)

and

cosφ = − cosω1 cosω2 − cos itot sinω1 sinω2. (48)

The latter equation emphasizes one of the main differences that arises from relaxing the test
particle approximation. In cases for which m1 ∼ m2 the contribution from the octupole level of
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Figure 11
Flip and maximum eccentricity parameter space in a two-hierarchical-planets configuration. The color describes (b) the maximum
eccentricity reached over an integration time of ∼5,000tquad and (a,c) the flip ratio, defined as the time the total inclination spends over
90◦ from the entire integration time. Panel b shows the phase space corresponding to emax and panel a shows the flip ratio as a function
of the initial outer orbit eccentricity (e2) and the initial mutual inclination. Note that both exhibit interesting behavior at similar parts
in the parameter space. However, for initial high inclination of 80◦–90◦, the flip is suppressed. The system considered here has the
following parameters: m1 = 1 M⊙, m2 = 1 MJ, m3 = 6 MJ, a1 = 5 AU, and a2 = 61 AU. Panel c shows the flip ratio in the initial a2–itot
phase space. The system considered in this panel has the same parameters as panels a and b, but with e2 = 0.5 and varying a2. The flip
condition for the test particle quadrupole (TPQ), following the condition in Equation 35, is shown in purple dots. The TPQ analysis
for panel a (c) suggests that all systems above (below) the “TP” dotted line are expected to flip. The solid black line represents the
stability condition; see Equation 51. Adapted from Teyssandier et al. (2013) with permission.

approximation can be negligible. This can be seen in the example in Figure 12 for a system in
which the only difference between the left and right panels is setting m2 = 0 in the left panels and
m2 = 8 M⊙ in the right panels (m1 = 10 M⊙). In the pure Newtonian regime, the EKL behavior
is suppressed (no flips or eccentricity peaks). The complete set of the equations of motion can be
found in Supplemental Text 1: The Secular Equations.
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Figure 12
Comparison between the test particle approximation and a comparable-mass system in the presence of
general relativity. The systems in the right and left panels have the same parameters and initial conditions
apart from m2, which is set to zero in panel a and m2 = 8 M⊙ in panel b. The other parameters are:
m1 = 10 M ⊙, m3 = 30 M ⊙, a1 = 10 AU, a2 = 502 AU, e1 = 0.001, e2 = 0.7, ω1 = ω2 = 240◦, and
itot = 94◦. Red lines correspond to pure Newtonian evolution, and blue lines include general relativity (GR)
effects [first post-Newtonian expansion (1PN), to the inner and outer orbits]. The horizontal lines are the
minimum eccentricity corresponding to the detectable LIGO frequency range (horizontal lines in the bottom
panels). GR corrections help to further increase the eccentricity and lead to orbital flips for the inner binary
for comparable masses. Adapted from Naoz et al. (2013b) with permission.

3. THE VALIDITY OF THE APPROXIMATION AND THE STABILITY
OF THE SYSTEM
The secular approximation described here utilizes averaging over the short orbital timescales, and
thus any modulations over these times are washed out. Katz & Dong (2012), Antognini et al.
(2014), Antonini et al. (2014), and Bode & Wegg (2014) showed that the inner orbit undergoes
rapid eccentricity oscillations near the secular value on the timescale of the outer orbital period
(see, for example, Figure 13). Ivanov et al. (2005) found the change in angular momentum (for
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Figure 13
Comparison of the eccentricity excitations. The figure considers the results from the secular approximation
(red lines) and N-body (black lines) and the predicted change from Equation 49. The system considered has
the following parameters: m1 = 107 M⊙, m2 = 105 M⊙, m3 = 107 M⊙, a1 = 1 pc, a2 = 20 pc, e1 = 0.1,
e2 = 0.2, and itot = 80◦. Panel a was initialized with ω1 = ω2 = 0◦ and panel b was initialized with
ω1 − ω2 = 90◦. Adapted from Antognini et al. (2014) with permission.

m1 ≫ m3, m2) during an oscillation is

+G1

µ1
= 15

4
m3

m1 + m2
cos imin

(
a1

a2

)2

k
√

m1a2, (49)

where µ1 is the reduced mass of the inner binary, and imin is the minimum inclination reached
during the oscillation. These rapid eccentricity oscillations happen because the value of the inner
orbit angular momentum goes to zero (i.e., extreme inner orbit eccentricity) on shorter timescales
than the outer orbital period. Furthermore, the arguments of periapsis of the inner and outer
orbits determine the direction of the oscillation. In that case the averaging is not sufficient, and
the secular approximation underestimates the maximum eccentricity that the system can reach.

Another condition takes place when there is a significant change in the angular momentum
during one inner orbital period. Assuming a fixed outer perturber and adopting an instantaneous
quadrupole torque, Antonini et al. (2014) took the limit of e1 → 1 and found a simple form to the
condition for which the averaging is valid:

√
1 − e1 ∼> 5π

m3

m1 + m2

[
a1

a2(1 − e2)

]3

(50)

[using slightly different settings, Katz & Dong (2012) and Bode & Wegg (2014) found a similar
condition]. Thus, if during the evolution the specific angular momentum becomes smaller than
the right-hand side of Equation 50, the angular momentum goes to zero on shorter timescales than
the inner orbital timescale. The immediate consequence of this is that the inner binary maximum
eccentricity will be larger than the value the secular approximation predicts.

Recently, Luo et al. (2016) showed that these rapid, short-timescale oscillations can accumulate
over long timescales and lead to deviations from the flip conditions discussed in Section 2.3.1, as
described in Equation 34. They found that the double-averaging procedure fails when the mass
of the tertiary m3 is large compared to the mass of the inner binary.

www.annualreviews.org • The EKL Effect and Its Applications 463

A
nn

u.
 R

ev
. A

str
on

. A
str

op
hy

s. 
20

16
.5

4:
44

1-
48

9.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 - 
Lo

s A
ng

el
es

 U
CL

A
 o

n 
10

/1
0/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



AA54CH12-Naoz ARI 25 August 2016 19:46

Another consequence of large eccentricities is the stability of the system. A long-term stability
condition that is often used in the literature is the one given by Mardling & Aarseth (2001), which
has the following form:

a2

a1
> 2.8

(
1 + m3

m1 + m2

)2/5 (1 + e2)2/5

(1 − e2)6/5

(
1 − 0.3itot

180◦

)
. (51)

Although this criterion was generated for similar-mass binaries and the inclination was added
ad hoc, it is often used for a large range of masses. A criterion takes into account both having the
outer orbit be wider than the inner one and the validity of secular approximation:

ϵ = a1

a2

e2

1 − e2
2

< 0.1. (52)

This is numerically similar to the Mardling & Aarseth (2001) stability criterion (Equation 51) for
systems over a large range of masses (as shown in Naoz et al. 2013b).

The stability of a two-planet system with low mutual inclination was studied by Petrovich
(2015c), using N-body integration. Assuming that m1 is a stellar-mass object and m2 and m3 are
planetary-mass objects, he found a stability criterion of the following form:

a2(1 − e2)
a1(1 + e1)

> 2.4

[

max
(

m2

m1
,

m3

m1

)]1/3√
a2

a1
+ 1.15. (53)

Systems that do not satisfy this condition (by a margin factor of ∼0.5) may become unstable.
Specifically, Petrovich (2015c) found that systems for which m2/m1 > m3/m1 will most likely
result in planetary ejections, whereas systems for which m2/m1 < m3/m1 may slightly favor
collisions with the host star.

The eccentricity excitations, both in the secular approximation and in its deviations, are ex-
tremely large (see Figures 7 and 11). This implies that in some cases the inner orbit can reach
such a small pericenter distance RLobe such that one of the objects may cross its Roche limit (e.g.,
in the case where m2 < m1):

RLobe = ηR2

(
m2

m1 + m2

)−1/3

, (54)

where η is a numerical factor of order unity.
Considering the definition of the Roche limit, we can also ask when the eccentricity of the

inner orbit becomes so large such that the tertiary captures a test particle that is orbiting around
the primary (m1, m3 ≫ m2), which can be written as

a1(1 + e1) = η̃a2(1 − e2)
(

m1

m3

)1/3

, (55)

where η̃ is of order unity and is of different value from η in Equation 54. A test particle initially
around m1 with larger separations feels a larger gravitational force from m3. Using the definition
of ϵ, Naoz & Silk (2014) found the mass ratio that will result in a stable configuration as a function
of the binary-mass ratio, i.e.,

m3

m1
=
[
η̃

e2

ϵ(1 + e1)(1 + e2)

]3

. (56)

Thus for mass ratios that are larger than the right-hand side of Equation 56, the approximation
breaks down and the test particle may be captured by m3 (some consequences are discussed in Li
et al. 2015).
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4. SHORT-RANGE FORCES AND OTHER ASTROPHYSICAL EFFECTS
The Newtonian evolution of the secular hierarchical three-body system has proven to be very
useful in modeling and analyzing many astrophysical systems. In realistic systems there are several
short-range forces and astrophysical affects that can significantly alter the evolution of the system.
For example, some short-range forces, such as tides and GR, induce precession of the periapse,
which strongly depends on the orbital eccentricity. If the orbit precesses, owing to the short-range
force, to the opposite direction than that induced by the Kozai-Lidov mechanism, then further
excitations of the eccentricity can be suppressed. In the limiting case, the precession is so fast
compared to quadrupole-level precession that the inner orbit initial eccentricity remains constant.
In fact, as is discussed below, in some cases the eccentricity excitation in the presence of short-range
force can be estimated analytically. Because in the Kozai-Lidov mechanism eccentricity is being
traded for inclination, once the eccentricity cannot be excited, the oscillations in the inclination
are limited in a similar way.

4.1. General Relativity
The fast precession of the perihelion of the inner orbit due to GR effects takes place on the opposite
direction of the quadrupole precession. Therefore, as mentioned before, the inner orbit extremely
high eccentricity excitations are suppressed, and thus so are the inclination flips as well. For
example, in the current location of most hot Jupiters, further eccentricity excitations are suppressed
owing to fast GR precession (and tides) in comparison with the quadrupole precession. Thus, hot
Jupiters have decoupled from their potential perturbers and do not flip anymore. However, the
tquad timescale is much shorter compared to the GR precession in asteroid and Kuiper belt binaries.

The precession of the inner orbit due to GR has a simple form:

dω1

dt

∣∣∣∣∣
1PN,inner

= 3k3(m1 + m2)3/2

a5/2
1 c 2

(
1 − e2

1
) , (57)

where the subscript 1PN,inner indicates that precession is due to first post-Newtonian (PN)
expansion for the inner orbit [see Misner et al. (1973) for a general derivation]. A similar expression
can be written for outer orbit GR precession, although this, typically, has little effect. Expanding the
first PN three-body Hamiltonian in semimajor axes ratio up to the octupole level of approximation
reveals another term that describes the GR interaction between the inner and outer orbits (Naoz
et al. 2013b). In many cases in which the leading Newtonian terms are important, this interaction
term can be neglected. The inner orbit GR precession timescale can be estimated simply as (Naoz
et al. 2013b)

t1PN,inner ∼ 2π
a5/2

1 c 2
(
1 − e2

1
)

3k3(m1 + m2)3/2 . (58)

If this timescale is shorter than the quadrupole timescale (Equation 27), eccentricity excitations
are suppressed (this has been noted in many studies, e.g., Ford et al. 2000b, Fabrycky & Tremaine
2007, Naoz et al. 2013b). For example, Figure 14 depicts the relevant timescales for a Jupiter-
mass planet around a 1-M⊙ star. Different perturbers induce quadrupole precessions, which are
compared with the GR precession (Equation 58). For example, a planetary companion at 30 AU
cannot excite the eccentricity of a Jupiter-mass planet that formed at 0.5 AU (a closer companion
can); however, a companion can excite the eccentricity of a 1-AU Jupiter-mass planet, which may
result in the formation of a hot Jupiter (see below).
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Figure 14
Relevant timescales for a Jupiter system. The system considered here is a Jupiter-mass planet at different
initial separations ainitial from a 1-M⊙ star. We consider the quadrupole timescale (Equation 27) for a stellar
perturber (m3 = 1 M⊙) at a2 = 1,000 AU and a2 = 500 AU (short-dashed and solid red lines, respectively), as
well as the case of a Jupiter perturber at 30 AU (long-dashed red line). e2 = 0.5 in all these cases. We also
consider the precession of the inner orbit due to GR, according to Equation 58 (blue line). The crossing point
between the blue and red lines roughly separates between the different behaviors, as depicted by the arrows.
We also consider the precession due to oblate objects form static tides (Equation 61; brown line) and the
typical timescales to circularize and shrink the orbit ( purple and black lines, respectively) according to the
equations in Supplemental Text 2: Static Tides Equations while adopting TV,1 = 50 years and
TV,2 = 1.5 years.

The relation between the timescales can be estimated by (e.g., Naoz et al. 2013b)

t1PN,inner

tquad
= a4

1

3a3
2

(
1 − e2

1
)

m3c 2

(
1 − e2

2
)3/2 (m1 + m2)2k2

= ε−1
GR(1 − e2

1). (59)

Here, we also introduce the parameter ε−1
GR defined by Liu et al. (2015). When the two timescales

are similar to one another, a resonant-like behavior emerges (Ford et al. 2000b, Naoz et al. 2013b).
An example for this behavior is shown in Figure 15a for different initial mutual inclinations and
setting initially e1 → 0. The value of this eccentricity can be estimated analytically; then we have
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1)–1 itot,0 (deg)
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a   Naoz et al. (2013b) m3/m1 = 106 b   Liu et al. (2015)

Figure 15
General relativity first post-Newtonian (1PN) expansion effects on the hierarchical three-body system.
(a) The emergence of resonant-like eccentricity excitations in the e1,max − ε−1

GR plane for different initial
inclinations. We consider the secular Newtonian evolution and the post-Newtonian evolution including
terms only up to O(a−2

1 ) (inner orbit precession, blue triangles), O(a−2
2 ) (outer orbit precession, green crosses),

and the interaction term (red squares). The location of the resonance will shift when including additional
three-body 1PN terms. The system is initialized with e1 = 0.001, ω2 = 0◦, and ω1 = 240◦ and with mutual
inclination corresponding to (from left to right) 95◦, 65◦, and 50◦, respectively. The other parameters are
m3/m1 = 106, m2 → 0, and e2 = 0.7. Adapted from Naoz et al. (2013b) with permission. (b) The analytical
solution for the maximum eccentricity in the e1,max − i0 plane for different values of εGR (note that εGR → 0
means no post-Newtonian contribution). This calculation considers only the inner orbit precession for small
εGR and high-inclination test particle orbit. Adapted from Liu et al. (2015) with permission.

a simplified equation for large eccentricity excitations (Liu et al. 2015):
⎛

⎝ εGR√
1 − e2

1

⎞

⎠

e1=e1,max

≈ 9
8

e2
1,max

j 2
1,min − 5 cos2 i0/3

j 2
1,min

; (60)

here, we remind the reader that j1,min =
√

1 − e2
1,max ≪ 1. This behavior is shown in Figure 15a

(see also Fabrycky & Tremaine 2007). The general expression of Equation 60, which is valid for
all values of e1,max, can be found in Liu et al. [2015, their equation 50; however, note that their
equation has a typo—the 3/5 in that equation should be 5/3 (B. Liu, D.J. Muñoz, and D. Lai,
private communication)]. As shown in this latter study, given an extra short-range force, such
as εGR, the maximum eccentricity can be predicted for the octupole level of approximation by
considering the perpendicular case of the quadrupole level of approximation.

Interestingly, even if the GR precession timescale is longer than the quadrupole timescale,
t1PN,inner > tquad, GR can have significant implications on the dynamical evolution. Specifically,
if tquad < t1PN,inner ∼< toct, GR precession can retrigger the EKL behavior for similar-mass inner
binaries. This can be seen in the example shown in Figure 12b, where we compare the pure
Newtonian case and the case which includes GR precession for the inner orbit. As depicted,
including GR effects retriggers the EKL behavior.

In the secular approximation GR effects are typically taken into account by only including
the inner body precession (Equation 57). Sometimes the outer orbit precession is also taken

www.annualreviews.org • The EKL Effect and Its Applications 467

A
nn

u.
 R

ev
. A

str
on

. A
str

op
hy

s. 
20

16
.5

4:
44

1-
48

9.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 - 
Lo

s A
ng

el
es

 U
CL

A
 o

n 
10

/1
0/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



AA54CH12-Naoz ARI 25 August 2016 19:46

into account (simply replace 1 with 2 in Equation 57)—this mainly affects the position of the
tquad ∼ t1PN,inner resonance (e.g., Naoz et al. 2013b, and see Figure 15a).

In some astrophysical settings higher PN orders of the inner orbit are important (e.g., Blaes
et al. 2002, Miller & Hamilton 2002, Wen 2003, Seto 2013, Antognini et al. 2014). In some cases
the GR (first PN) term that describes the interactions between the inner and outer orbits may
have some effects (Naoz et al. 2013b). However, as shown by Will (2014a,b), when GR effects
between the two orbits become more important, the gravitational weak-field approximation is
no longer valid, which results in deviations of the dynamics compared with the double-averaging
process.

4.2. Tides and Rotation
Similar to the suppression of eccentricity excitations due to GR precession, precession of the
nodes due to oblate objects form static tides, or rotating objects, can cause a similar affect. Mazeh
& Shaham (1979) first included tidal effects to the hierarchical triple-dynamical evolution (in
the TPQ case and assuming small mutual inclinations). This was then generalized in a series of
papers by Kiseleva et al. (1998), Eggleton et al. (1998), and Eggleton & Kiseleva-Eggleton (2001),
based on Hut (1980) equilibrium and static tides formalisms. The strength of the equilibrium
tide recipe presented here is that it is self-consistent with the secular approach. Furthermore,
assuming polytropic stars, this recipe has only one dissipation parameter for each member of the
binary. In other words, tides can be considered for both members of the inner orbit. Using this
description one is able to follow the precession, due to oblateness and tidal torques, of the spin of
the star and the planet. We provide the set of equations in Supplemental Text 2: Static Tides
Equations. Different choices of the tidal model can result in quantitatively different results, such
as the relevant separations at which eccentricity excitations are suppressed and the time evolution
of the circularization and orbital shrinking process.

During the system evolution, the EKL mechanism can cause large eccentricity excitations for
the inner orbit (for example, see Figures 7 and 11). Thus, on one hand, the nearly radial motion
of the binary drives the two inner binary members to merge, whereas on the other hand, the tidal
forces tend to shrink and circularize the orbit (see Figure 16, panels b,d and a,c, respectively). If
during the evolution the tidal precession timescale (or the GR timescale) is similar to that of the
quadrupole timescale (which is the shortest secular timescale; Equation 27), further eccentricity
excitations are suppressed. In this case tides can shrink the binary semimajor axis and form a tight
binary decoupled from the tertiary companion. In other words, the precession timescale associated
with the gravitational perturbations from the tertiary is slower than the short-range precession
timescales. The final separation may remain on a stable orbit (note that tides always tend to shrink
the binary separation, but this happens on much longer timescales). An example of this behavior
is shown in Figure 16a,c. However, if the eccentricity is excited on a much shorter timescale
than the typical tidal (or GR) precession timescale (but, of course, still long enough so the secular
approximation is valid), the orbit becomes almost radial, and tidal precession does not have enough
time to affect the evolution. In this case the pericenter distance may be shorter than the Roche
limit of at least one of the binary members (see Equation 54). An example of this behavior is shown
in Figure 16b,d.

The typical timescales associated with these precessions are (see Equations 86–90 in Supple-
mental Text 2: Static Tides Equations for the sources of these timescales)

tTide ∼
a13/2

1 m2
(
1 − e2

1
)5

√
kkL,2 fT (e)m1(m1 + m2)R5

2

(61)
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Figure 16
(a,c) Circularization and shrinking of the orbits due to tides and (b,d ) tidal disruption. Panels a and b show
the systems’ mutual inclination (red lines) and obliquity (magenta lines). Panels c and d show the semimajor
axes (red lines) and pericenter distances (blue lines) in astronomical units. Also shown in dashed lines are the
pericenters at which tidal disruption takes place according to Equation 54, adopting η = 2.7 (e.g.,
Guillochon et al. 2011, Liu et al. 2013). Panels a and c consider a Neptune-sized planet around a 0.32-M⊙
M-dwarf star, initially set at a1 = 2 AU and e1 = 0.01. The third object is a brown dwarf with m3 = 10 MJ at
50 AU, with e2 = 0.52. The orbits have initially ω1 = ω2 = 0◦ and a mutual inclination of 65◦. The spin
periods of the star and planet were assumed to be 4.6 days and 1 day, respectively. Panels b and d consider a
Jupiter-mass planet at a 5-AU separation from a 1-M⊙ star with a 1-M⊙ stellar companion at 200 AU. The
system initially sets with e1 = 0.001, e2 = 0.75, ω1 = ω2 = 0◦, and i = 87◦. The spin periods of the star and
planet were assumed to be 24 days and 10 days, respectively. Both systems start initially aligned (i.e., zero
obliquity for both the planet and the star) and TV ,1 = 50 years and TV ,2 = 1.5 years.

and

tRot ∼
√

ka7/2
1 m2

(
1 − e2

1
)2

kq ,2$
2
s ,2

√
1 + m2 R5

2
(62)

for tidal and rotational precessions, respectively. We define

fT (e1) = 1 + 3
2

e2
1 + 1

8
e4

1, (63)
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Figure 17
Maximum eccentricity in the presence of (a) tides and (b) rotation. Adapted from Liu et al. (2015) with
permission.

and R1 and $s ,2 are the radius and spin rate, respectively, of m2. Furthermore, kL,2 is its Love
parameter, and kq ,2 is the apsidal motion constant. Similar to the GR case, Liu et al. (2015)
defined εRot = tquad/tRot(1 − e2

1)2 and εTide = tquad(1 − e2
1)5/[tTide fT (e1)]. With these definitions,

Equation 60 can be generalized (Liu et al. 2015):
⎡

⎣ εGR√
1 − e2

1

+ 1
15

εTide
(
1 − e2

1
)9/2 f̃ (e1) + 1

3
εRot

(
1 − e2

1
)3/2

⎤

⎦

e1=e1,max

≈ 9
8

e2
1,max

j 2
1,min − 5 cos2 i0/3

j 2
1,min

, (64)

where

f̃ (e1) = 1 + 3e2
1 + 3

8
e4

1. (65)

Note that here we used the ε notation introduced by Liu et al. (2015) to avoid confusion with
their definition of ω̇, which is different from that used in this review. In Figure 14, we show the
tidal precession timescale compared with the other relevant timescales for a Jupiter-mass planet
around a Sun-like star. The maximum eccentricity that can be achieved as a function of inclination
for a test particle approximation and e1,0 ∼ 0 is shown in Figure 17.

5. APPLICATIONS
There are a few main general commonalties between all applications, which we discuss below.
The first is the possible outcome due to eccentricity excitation of the inner orbit. As shown in
Figure 16, these high eccentricities can result in tidal evolution that will lead to tight inner binaries,
or they will result in Roche limit crossing. For a different astrophysical setting this can result in
mergers, collisions, tidal disruption events, supernova, etc. Another general outcome is that an
initial isotropic distribution of inclination of triple systems is not conserved. In the following, we
review a few of the examples of these applications to different astrophysical systems.

5.1. Solar System
Kozai (1962) studied the secular dynamical evolution of an asteroid, at 2 AU, due to Jupiter’s
gravitational perturbations in the framework of the TPQ approximation. He showed that the
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asteroid undergoes large eccentricity and inclination oscillations. Considering the hierarchical
nature of the approximation, we note that the system is in fact not valid to be addressed by sec-
ular approximation. The semimajor axes ratio between the asteroid (2 AU) and Jupiter (5 AU)
yields a rather large value (a1/a2 = 0.6), which suggests that the hierarchical approximation is not
valid. Furthermore, Kozai (1962) assumed that Jupiter’s eccentricity is strictly zero. Taking into
account Jupiter’s eccentricity of ∼0.05 leads to a nonnegligible contribution from the octupole
level of approximation ϵ = 0.03; this suggests that the EKL mechanism may significantly alter the
evolution of the asteroid. This is shown in Figure 18, which considers the TPQ approximation
but also considers the EKL evolution. Figure 18 shows that the TPQ approximation is rather
inadequate to address this problem. Furthermore, as mentioned, Jupiter is not far enough away
to unitize the hierarchical approximation for this problem, which can be seen from the N-body
simulation result obtained using the Mercury software package (Chambers & Migliorini 1997).
We used both Bulirsch–Stoer and symplectic integrators (Wisdom & Holman 1991). This cal-
culation shows that indeed the asteroid may impact the Sun and that the actual evolution of the
system is closer in behavior to the EKL (TPO in this case) than the TPQ approximation.

As mentioned above, the TPQ approximation can successfully describe the evolution of a variety
of test particle systems in the Solar System. For example, it was used to explain the inclinations
of gas giant satellites and Jovian irregular satellites (e.g., Kinoshita & Nakai 1991, Vashkov’yak
1999, Carruba et al. 2002, Nesvorný et al. 2003, Ćuk & Burns 2004, Kinoshita & Nakai 2007).
Furthermore, the importance of secular interactions for the dynamics of comets and other test
particles in the Solar System was noted in several studies (e.g., Kozai 1979, Quinn et al. 1990,
Bailey et al. 1992, Thomas & Morbidelli 1996, Duncan & Levison 1997, Gronchi & Milani 1999,
Gomes et al. 2005, Tamayo et al. 2013). Another interesting example of the application of three-
body dynamics relates to binary minor planets. Observations suggest that near-Earth asteroid
(NEA) binaries are common [about 15% rNEA > 300 m (Pravec et al. 2006, Margot et al. 2015)
and perhaps as high as 63% for a larger range of sizes (Polishook & Brosch 2006)]. Furthermore,
about 15% of asteroids and high multiples reside in binaries (Pravec et al. 2006), and Nesvorný
et al. (2011) suggested that the binary fraction in the Kuiper belt can be as high as 40%. In all
of these cases a natural third body is simply the Sun, which gravitationally perturbs the binary
orbit. Perets & Naoz (2009) and Naoz et al. (2010) have studied the evolution of binary minor
planets, in the frame work of TPQ, and showed that the dynamical evolution largely affects the
observed orbital distribution of these objects. Specifically, they showed that in the inclination–
separation phase space there is a regime associated with high mutual inclination that is devoid
of eccentric wide binaries. Eccentricity excitations in this regime, due to the Sun’s gravitational
perturbation, can lead to shrinking and circularizing of the binary’s orbit or even lead to binary
coalescences. Furthermore, Kinoshita & Nakai (1991, 2007), Vashkov’yak (1999), Carruba et al.
(2002), Nesvorný et al. (2003), and Ćuk & Burns (2004) suggested that secular interactions and
Kozai oscillations may explain the significant inclinations of gas giant satellites and Jovian irregular
satellites. Binaries that are closer to the Sun, such as binary asteroids and near-Earth binaries, will be
sensitive to a wider range of physical effects, and specifically the induced precession of the binary
due to an oblate object may suppress eccentricity excitations (Fang & Margot 2012). Another
potentially important mechanism is the YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect,
which can significantly alter the spin of asteroids and near-Earth objects (e.g., Polishook & Brosch
2009). This in turn can result in even larger effects on the precession due to rotation.

5.2. Planetary Systems
Recent ground- and space-based observations have transformed our understanding of the prop-
erties of exoplanetary systems. The detection of several thousand planets and planet candidates
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Figure 18
Kozai’s (1962) study of secular evolution of an asteroid due to Jupiter’s gravitational perturbations. The
system is set with m1 = 1 M⊙, m2 → 0, and m3 = 1 MJ, with a1 = 2 AU and a2 = 5 AU. We initialize the
system with e1 = 0.2, e2 = 0.05, ω1 = ω2 = 0◦, and itot = 65◦. We consider the test particle quadrupole
(TPQ) evolution (cyan lines) and the EKL evolution (red lines). The dashed green line in panel a marks the
90◦ boundary. The result of an N-body simulation (blue lines) is also shown. The thin horizontal dotted line
in panel b marks the eccentricity corresponding to a collision with the solar surface, 1 − e1 = R⊙/a1. At this
instance, we have stopped the numerical integration. Adapted from Naoz et al. (2013a) with permission.

have revealed many puzzles that challenge traditional planet-formation theories and have gen-
erated many new ideas. One of the greatest mysteries in the past two decades lays in a class of
giant planets called hot Jupiters. These are Jupiter-sized planets that are found in extremely short-
period orbits around their host stars (i.e., periods of a few days or less). Most theories posit that
these planets still form on larger (greater than astronomical units) scales, like in the Solar System,
but move inward to short orbital periods. Thus, a migration mechanism is needed to reduce the
angular momentum of these planets by two orders of magnitude (from a few astronomical units
to about a few percent of an astronomical unit). Broadly speaking, there are two main channels
considered in the literature to achieve this. In the first channel, planets form in the disk, and in
some cases, angular momentum exchange between the planets and the protoplanetary disk can
produce inward migration (e.g., Lin & Papaloizou 1986, Masset & Papaloizou 2003). In the sec-
ond channel, planets also form in the disk, but dynamical interactions between multiple planets
or a stellar companion greatly affect the final orbital configuration of the system through a variety
of mechanisms such as planet-planet scattering (e.g., Rasio & Ford 1996), EKL (see below), or
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secular chaos (Lithwick & Wu 2012, Hansen & Zink 2015). The role of planet or stellar dynam-
ical interactions is motivated by the presence of substantial eccentricities among the more distant
Jovian population, and the discovery of high obliquities (misalignments between planetary orbital
and host-star spin directions; e.g., Albrecht et al. 2012b). Both of these features would tend to be
damped by the dissipative interactions with a protoplanetary disk and have spawned an interest in
processes that can lead to migration through predominantly dynamical interactions.

The first application of three-body secular interaction to a planetary system began with the
detection of 16 Cyg B (Cochran et al. 1996), where Holman et al. (1997) and Mazeh et al. (1997)
attributed its high eccentricity (e ∼ 0.63) to the Kozai-Lidov mechanism (in the framework of
the TPQ approximation). They also showed that the planet spends about ∼35% of its lifetime in
a high eccentric orbit, e > 0.6. In subsequent nominal studies by Wu & Murray (2003), Wu et al.
(2007), and Fabrycky & Tremaine (2007) the consequences of the TPQ approximation in forming
hot Jupiters in stellar binaries was investigated in greater detail and included GR and tides. As the
orbit evolves dynamically owing to gravitational perturbation from the outer orbit, the planet’s
orbit becomes eccentric and the planet spends long times around the host star. At these intervals,
tides on the planet and on the star affect the orbit, which tends to circularize and shrink it. This
scenario was suggested as a possible formation channel for hot Jupiters without the need for disk
migration (Lin & Papaloizou 1986).

As an aftermath of using the TPQ approximation these studies found that in order to form
hot Jupiters the initial mutual inclination needs to be rather close to perpendicular (90◦ ± 3◦; e.g.,
Fabrycky & Tremaine 2007). An important outcome from these calculations was the prediction
of retrograde hot Jupiters (i.e., obliquities larger than 90◦; Fabrycky & Tremaine 2007, Wu et al.
2007). The recent detections of retrograde hot Jupiters (e.g., Triaud et al. 2010, Winn et al.
2010, Albrecht et al. 2012b) resulted in new interest in the possibilities that secular three-body
interactions present for this field.

The formation of hot Jupiters via the EKL mechanism, including GR and tides for two-
planet systems, was studied by Naoz et al. (2011); see Figure 19. A simplified Monte Carlo
simulation for initially an aligned Jupiter in a two-planet system resulted in a nearly uniform
obliquity distribution, as well as a nearly uniform mutual inclination distribution. Similar results
for the inclination and obliquity distributions were achieved for the formation of hot Jupiters in
stellar binary systems (effectively repeating the analysis by Fabrycky & Tremaine 2007, but for the
EKL mechanism and exploring a larger range of orbital parameters). The obliquity distribution is
shown in Figure 20a. Projecting the resulted obliquity angles on the sky (see Figure 20b) allows for
direct comparison with observations (e.g., Morton & Johnson 2011). Naoz et al. (2012) performed
a Bayesian analysis that treats the complete obliquity distribution as a sum of contributions from
an aligned component, an EKL component, and a planet–planet scattering component (adopting
Nagasawa & Ida 2011). They found that the EKL most likely accounts for ∼30% of the observed
systems, and planet–planet scattering contributes ∼10–20% independent of the formation rate.
That analysis also showed that EKL produces between 60% and 80% of large obliquity angles.
These values are consistent with complementary analyses that showed that hot Jupiters are likely
to have a faraway companion (e.g., Knutson et al. 2014, Ngo et al. 2015, Wang et al. 2015).

It was later shown, in the framework of a hierarchical triple system, that the behavior of the
obliquity angle is chaotic in nature (Storch et al. 2014, Storch & Lai 2015). The planetary orbital
angular momentum vector precesses around the total angular momentum at a rate that is inversely
proportional to the quadrupole timescale ∼t−1

quad. Due to the rotation-induced stellar quadrupole,
the planet induces precession in the stellar spin axis, which is proportional to the stellar spin’s
angular momentum. As shown by Storch et al. (2014), when the latter precession spin is larger
than the orbital precession rate, the stellar spin axis follows G1 adiabatically while maintaining an
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Figure 19
Hot Jupiter formation in a two-planet system. Panels show (a,b,c) the full evolution and (d,e,f ) zoom ins on
the final three quadrupole cycles, with the evolution of the obliquity. We consider the full, octupole-level
evolution, which includes general relativity (GR) and tides evolution (red lines), and the quadrupole level,
which includes GR and tides (blue lines). Panels a and d show the inclination of the system of the full,
up-to-the-octupole-level evolution, which includes GR and tides (red line), and the inclination for the
quadrupole level, including GR and tides (blue lines). Green shows the obliquity. Panels b and e show the
eccentricity as 1 − e1 (again, red lines are for the octupole and blue lines are for the quadrupole). Panels c and f
show the semimajor axes for the outer (top) and inner (bottom) binaries (red lines) and their apocenters and
pericenters ( gray lines). Note that panel c is log scaled, whereas panel f is linear scaled. The system parameters
are: m1 = 1 M⊙, m2 = 1 MJ, m3 = 3 MJ, a1 = 6 AU, a2 = 61 AU, e1 = 0.001, e2 = 0.6, ω1 = 45◦, ω2 = 0◦,
and itot = 71.5◦. The system started with zero obliquity, and the spin periods of the star and the planet are
25 days and 10 days, respectively. The viscous times here are tV ,1 = 5 years and tV ,2 = 1.5 years; the spin
period of the star was assumed to be 25 days. Adapted from Naoz et al. (2011) with permission.

approximately constant obliquity. In the other extreme case, when the maximal spin precession
rate is always smaller than the orbital precession rate, the spin axis effectively precesses around the
total angular momentum (about which G1 is precessing). In the intermediate regime, Storch et al.
(2014) showed that a secular resonance occurs, which leads to complex and chaotic spin evolution.
Short-range forces can further complicate the obliquity evolution and affect the formation of hot
Jupiters (Storch et al. 2014, Storch & Lai 2015).

The large eccentricity excitations induced via the EKL mechanism can result in a nearly radial
motion and drive the planet into the star (as illustrated in Figure 16b,d). Thus, the formation
fraction of hot Jupiters is highly sensitive to the disruption distance (as shown in Figure 21;
vertical lines are based on Equation 54). For lower-mass planets, such as rocky planets, tides (or
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Figure 20
Hot Jupiter obliquity distribution in stellar binaries. (a) The true obliquity (ψ) distribution, as a result of fiducial Monte Carlo
simulations by Naoz et al. (2012) (blue line), for a wide range of companion initial separations, setting planetary viscous tides to be
tV ,2 = 1.5 years. This distribution has a characteristic cutoff near 140◦. This limit arises from the Kozai angles (the separatrix ∼140◦)
for which the large oscillations take place. Also shown are the results from the Monte Carlo simulations with different settings. In
particular, the dashed black line represents a companion at a2 = 1,000 AU, and the thin solid red line represents a companion with
a2 = 500 AU. In both cases the planetary viscous tides are set to be tV ,2 = 1.5 years. Also overplotted is a Monte Carlo simulation for a
companion separation of a2 = 500 AU with tV ,2 = 0.015 years (dot-dashed green line). (b) The projected obliquity from Monte Carlo
simulations by Naoz et al. (2012) , as well as the observations (as for 2012) exoplanets.org, and the projected obliquity of Nagasawa &
Ida (2011). The stellar spin-period assumed for these figures was 25 days. Different Roche-limit estimates do not change this result
(e.g., Petrovich 2015a); however, different stellar spin-periods or evolution of the spin period may result in a deviation from this
distribution (Storch et al. 2014). Adapted from Naoz et al. (2012) with permission.

GR, or quadrupole moments from fast rotating stars) are largely ineffective at stopping the EKL’s
nearly radial motion, resulting in a high probability of tidal disruption (e.g., Lanza & Shkolnik
2014, Rice 2015). Apart from tidally disrupting the planet, binary companions can also lead to
large instabilities, which may result in swapping planets between the stars (e.g., Kratter & Perets
2012, Moeckel & Veras 2012). In addition, as the stars evolve beyond the main sequence, the
existence of a companion (a star, brown dwarf, or a planet) can lead to ejection of planets (e.g.,
Veras & Tout 2012; Veras et al. 2013, 2014) or engulfment of the innermost planet (e.g., Li et al.
2014c, Frewen & Hansen 2016).

The observational studies that showed that hot Jupiters are likely to have a faraway companion
(e.g., Knutson et al. 2014, Ngo et al. 2015, Wang et al. 2015) promoted further investigations
of two-planet systems. As shown in Figure 11, a similar-mass perturber yields large eccentricity
excitations with suppression of large eccentricities for large mutual inclinations (Teyssandier et al.
2013). Therefore an inclined planetary perturber can lead to short-period oblique planets (Naoz
et al. 2011, Li et al. 2014c). If large eccentricities are generated, according to the stability criterion
in Equation 53 the inner planet can either be ejected from the system or collide with the host star.
In some cases, when the forced eccentricity from the perturber causes the orbit to shrink, the orbit
reaches a semimajor axis for which tidal precession is comparable with the quadrupole timescale (as
noted in Section 4.2). This suppresses further circularization and shrinking of the orbit, which may
lead to the formation of eccentric warm Jupiters (Dawson & Chiang 2014; Dong et al. 2014, 2015).

Recently, the Kepler mission detected several circumbinary planetary systems (Doyle et al. 2011;
Orosz et al. 2012a,b; Welsh et al. 2012, 2015; Kostov et al. 2013, 2014; Schwamb et al. 2013). These
systems are composed of a stellar binary on an orbit with a typical period of 7.5 to 41 days orbited
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Figure 21
The fraction of hot Jupiters formed in the fiducial Monte Carlo simulation by Petrovich (2015a) as a
function of the disruption distance. The vertical lines indicate different disruptions distances parameterized
by η in Equation 54. The different values (η = 1.66, 2.16, and 2.7) correspond to the values adopted in Naoz
et al. (2012), Wu et al. (2007), and Petrovich (2015a), respectively. Adapted from Petrovich (2015a) with
permission.

by a planetary companion on a much longer period (∼50–250 days). Interestingly, no transiting
planets have been found around more compact stellar binaries (∼<7-day period), although these
binaries are abundant in nature and in Kepler eclipsing binary data (Raghavan et al. 2006, 2010;
Tokovinin 2014b). Two main questions about circumbinary planets were addressed recently in the
literature. One considered the apparent absence of circumbinary planets around compact stellar
binaries, and the other was about the configuration of the planetary orbit. Starting with the former,
the formation of compact stellar binaries is often associated with dynamical evolution, which
involves a tertiary (e.g., Naoz & Fabrycky 2014, and see below). In the context of this channel, it
was suggested that the outer perturber that drives the two stars into a tight orbit may also impact
the planetary companion around the inner two stars and may result in a large eccentricity planetary
orbit leading to ejection or collision with the inner stars. However, circumbinary planets around
compact binaries may still exist, but they probably will end up misaligned with the inner stellar
orbit (e.g., Hamers et al. 2016, Martin et al. 2015, Muñoz & Lai 2015). In fact the misalignment
can be generated simply from eccentricity and inclination oscillations on the inner orbit, from a
test particle as shown in Figure 4 (e.g., Martin & Triaud 2015b). Therefore, because many of
the Kepler binary detections are eclipsing binaries, if misaligned systems around stellar systems
exist, they are presently hidden from the current Kepler detection methods. This may imply that
circumbinary planets are rather abundant, perhaps even more than planets around single stars
(e.g., Armstrong et al. 2014; Martin et al. 2015; Martin & Triaud 2015a,b; but see Deacon et al.
2016).

5.3. Stellar Systems
Most massive stars reside in a binary configuration (∼>70% for massive stars; see Raghavan et al.
2010). It seems that stellar binaries are responsible for diverse astrophysical phenomena, from
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Type Ia supernovae to X-ray binaries. However, observational campaigns have suggested that
probably many of these binaries are in fact triples (e.g., Tokovinin 1997, 2008; Eggleton et al.
2007). Tokovinin (1997) showed that 40% of binary stars with periods of <10 days in which the
primary is a dwarf (0.5–1.5 M⊙) have at least one additional companion. He found that the fraction
of triples and higher multiples among binaries with periods of 10–100 days is ∼10%. Moreover,
Pribulla & Rucinski (2006) surveyed a sample of contact binaries and noted that among 151
contact binaries brighter than 10 mag, 42 ± 5% are at least triples. Furthermore, a recent analysis
of eclipse time variation curves of Kepler binaries showed that indeed a substantial fraction of these
binaries have a third body (Borkovits et al. 2016). Thus, it seems that triple stars are abundant in
our Galaxy. From dynamical stability arguments these must be hierarchical triples, in which the
(inner) binary is orbited by a third body on a much wider orbit.

Application of the secular hierarchical triple-body system to triple-stellar system was first
considered by Harrington (1968, 1969). His work was motivated by Heintz (1967), who observed
triple-stellar systems with possible perturbations from the outer orbit. In this early work he already
recognize the importance of the octupole level of approximation and expanded the Hamiltonian up
to the octupole level of approximation. From the equations of motion he estimated a distribution
for the inner orbit specific angular momentum

√
1 − e2

1 to match the observed distribution of
triples. Later, Mazeh & Shaham (1979) showed that tidal effects during eccentricity excitations of
the Kozai-Lidov cycle can circularize and shrink the orbit.

During system evolution, the star can cause large eccentricity excitations for the inner orbit.
Therefore, the nearly radial motion of the binary drives the two stars to merge; however, tidal
forces tend to shrink and circularize the orbit. If during the evolution the quadrupole level of
approximation precession timescale is longer than the precession timescale associated with short-
range forces (such as tides, e.g., Equation 61, or GR, e.g., Equation 58), further eccentricity
excitations are suppressed. In this channel, tidal forces can shrink and circularize the inner orbit,
forming a tight inner stellar binary decoupled from the tertiary. This process was studied at great
length in the literature as a promising channel to explain triples and close binaries observations
(e.g., Söderhjelm 1975, 1982, 1984; Eggleton et al. 1998; Kiseleva et al. 1998; Ford et al. 2000a;
Eggleton & Kiseleva-Eggleton 2001; Fabrycky & Tremaine 2007; Perets & Fabrycky 2009;
Thompson 2011; Shappee & Thompson 2013; Naoz & Fabrycky 2014). We show here the up-
dated inner orbit specific angular momentum simulated distribution compared to observations
in Figure 22c, reproducing Harrington’s (1968) figure 3. Observations are taken from Raghavan
et al. (2010) and Monte Carlo simulations are adopted from Naoz & Fabrycky’s (2014) EKL
triple-star simulations.

Naoz & Fabrycky (2014) ran a large Monte Carlo simulation—including the EKL mechanism,
tides (as described in Supplemental Text 2: Static Tides Equations), and GR—for 10 Gyr
of evolution, producing the distribution for semimajor axis, eccentricity, inclination, and obliq-
uity. The observed bimodal distribution of the inner orbit reported by the Tokovinin (2008)
public catalog (see Figure 22a) is reproduced by Naoz & Fabrycky’s (2014) simulations. Their
Kolmogorov-Smirnov test does not reject the null hypothesis that the observed inner orbit pe-
riod’s distribution and the simulated one are from the same continuous distribution. Furthermore,
they found that the simulated outer orbit distribution of the close binaries is consistent with that
from the Tokovinin (2008) catalog of observed triples (e.g., Figure 23). Thus, they concluded that
secular evolution in triples plays an important role in shaping the distribution of these systems.

Tokovinin & Smekhov (2002) reported that wide binaries are more likely to have nonnegligible
eccentricity (see also Tokovinin & Kiyaeva 2015). For wide binaries in triple systems this seems
to be in agreement with the dynamical eccentricity excitation from an outer perturber where
tidal shrinking and circularization are less efficient (as can be seen in Figure 22c.) The systems
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Figure 22
Simulated inner binary orbital configuration compared with observations. (a) Final distribution of the spin orbit angle (i.e., the
obliquity) of the primary versus the final period of the inner orbit, the color code is the final eccentricity of the inner binary. We also
plot the observations (Albrecht et al. 2009, 2011, 2013, 2014; Harding et al. 2013; Triaud et al. 2013; Zhou & Huang 2013). (b) The
cumulative distribution of the observations distribution taken from the Tokovinin (2008) public catalog (dashed black line) compared
with the final distribution (solid gray line). Because the public catalog has typical inner orbital eccentricity of 0.5, the final distribution is
also shown for the system with e1,F < 0.5 (solid green line). (c) The inner orbit final eccentricity as a function of the final period.
Overplotted are observations adopted from the Raghavan et al. (2010) public catalog. The solid line represents a constant angular
momentum curve with a final binary period of 5.5 days. (d ) Reproduction of the inner orbit specific angular momentum distribution
considered first by Harrington (1968) and compared to observations by Raghavan et al. (2010). Panels a, b, and c and the Monte Carlo
simulations are adapted from Naoz & Fabrycky (2014) with permission.

near the constant angular momentum line may represent a population of migrating binaries due
to tidal dissipation (as also seen in the Kepler binary stellar population; e.g., Dong et al. 2013).
Furthermore, the formation channel of close stellar binaries via EKL and tides was suggested
to somewhat suppress the likelihood of finding aligned circumbinary planets around tight stellar
binaries (e.g., Hamers et al. 2016, Martin et al. 2015, Muñoz & Lai 2015).

An interesting and promising observable for triple-stellar dynamics may be the obliquity angle.
As more binary stars’ obliquities are being observed [e.g., by the BANANA survey (Albrecht et al.
2012a), and by other individual endeavors], the obliquity distribution may provide a key observable.
During the tidal evolution the obliquity of the tight binaries most likely decays to zero faster than
the eccentricity. This causes systems that are close to the angular momentum line to have typically
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Figure 23
Simulated outer binary period compared with observations. (a) The period of companions for the merged
stellar population (red line) and the observed blue stragglers binary distribution of NGC 188 (Geller &
Mathieu 2012), also scaled to match the theory lines. (b) The period distribution of the companion of the
close binaries (blue line); the latter is defined to have periods shorter than ∼16 days. Overplotted is the
observed distribution, scaled to match the theory lines, adopted from the Tokovinin (2008) public catalog. In
both panels, gray lines represent the period distribution at the final stage of all of the outer companions in
the Monte Carlo runs. Adapted from Naoz & Fabrycky (2014) with permission.

low obliquities (Naoz & Fabrycky 2014). This behavior is depicted in Figure 22a, which shows
that the final obliquity distribution of close binaries with moderate eccentricities have moderate
obliquities. Close circular inner binaries with nonnegligible obliquities (>10 deg) are found to
have smaller spin periods (see also Fabrycky et al. 2007, Levrard et al. 2007). The simulated stellar
obliquities shown in Figure 22 are consistent with the current available observations.

Strong gravitational perturbations can lead to mergers of the inner members, if the tidal forces
cannot react fast enough to stabilize the system (see, for example, Figure 16b,d). In the previous
section, we discussed tidal disruptions of hot Jupiters due to large eccentricity excitations. In
the context of triple-stellar systems, extreme values of the eccentricity that take place on shorter
timescales than that of the short-range forces (such as GR and tides), but still long enough to
allow the system to remain secular, may lead to the merger of stellar binaries. If sufficient time has
passed from the merger time (perhaps on the order of a Kelvin-Helmholtz timescale), this merger
product may be identified as a blue straggler. Perets & Fabrycky (2009) envisioned a two-step
process for which triple-body interactions can form blue stragglers. In their study, three-body
dynamics plus tidal dissipation created a close binary, and that binary subsequently merged by
magnetic breaking or had unstable or efficient mass transfer. Naoz & Fabrycky (2014) suggested
that large eccentricity excitation during the EKL evolution can lead to mergers. They found that
their simulated outer orbital period distribution is consistent with observations for the companion
of the merged population, adopted from Geller & Mathieu (2012), as depicted in Figure 23. This
further emphasizes the notion that three-body secular interactions may be the main channel for
merged systems like blue stragglers.

Another example of interesting evidence for a merged system via perturbations from a distant
perturber was recently found in the Galactic Center. Specifically, it seems that the object known
as G2 (Gillessen et al. 2012) is a binary star in disguise (Witzel et al. 2014). Therefore, a similar
mechanism to that of the formation of blue stragglers may operate in the Galactic Center, where
the massive black hole in the center of the Galaxy causes large eccentricity excitations on a stellar
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binary in its vicinity (e.g., Antonini & Perets 2012, Prodan et al. 2015; also Stephan et al., in
preparation).

The secular approximation allows for long integration times in which stellar evolution may
play an important role (e.g., Perets & Kratter 2012, Shappee & Thompson 2013). In particular, in
systems that have inner binary members with close mass values (i.e., m1 ≈ m2), the octupole level
is suppressed [recall the definition of ϵM (Equation 45) and Figure 12]. However, stellar mass
loss during post-main-sequence evolution can dramatically change the mass balance and retrigger
the EKL behavior (Shappee & Thompson 2013). This is because the semimajor axis changes in
proportion to the mass-loss ratio, i.e., a f /ai = m f /mi , where the subscripts f and i refer to the
final and initial values. Note that adiabatic mass loss conserves the value of the orbital eccentricity.
Thus, the ϵM due to mass loss can change in comparison to the initial value (e.g., Shappee &
Thompson 2013, Michaely & Perets 2014, Naoz et al. 2016):

ϵM , f

ϵM ,i
= m1, f + m2 + m3

m1,i + m2 + m3

(
m1, f − m2

m1,i − m2

)(
m1,i + m2

m1, f + m2

)2

. (66)

For simplicity for this equation, we assumed that only one mass will undergo mass loss (m1,i →
m1, f ). Overall the absolute value of ϵM via this process increases. An example of this evolution
is shown in Figure 24. The system is set initially with an inner binary composed of two stars of
similar mass. As the more massive star loses mass the new ϵM increases, according to Equation 66,
allowing for larger eccentricity excitations. When the stars inflate in radius as they leave the
main sequence, the disruption distance associated with their Roche limit increases as well (e.g.,
Equation 54). The eccentricity excitations were too small to affect the orbit before the first NS
was born. However, during the large eccentricities excitation after ϵM increased; the inflation
in radius of the less-massive star resulted in this star crossing its Roche limit. This may form a
high-mass X-ray binary (HMXB) that may be associated with a supernova impostor (as suggested
for a binary interaction for supernova 2010d; e.g., Binder et al. 2011). Another possible outcome
for this system is a Thorne-Żytkow object (e.g., Thorne & Zytkow 1975), which has distinct
observational signatures (e.g., Levesque et al. 2014). Recently, Naoz et al. (2016) showed that
triple dynamics can offer a possible formation channel to low-mass X-ray binaries (LMXBs) while
skipping the common envelope phase and, by that, overcoming the challenges that arise with the
standard formation scenario (for more details about the challenges in the standard formation see
Podsiadlowski et al. 2003).

Shappee & Thompson (2013) suggested that retriggering the EKL behavior via mass loss may
facilitate the formation of close NS–WD binaries (or other combinations such as NS–NS, or
WD–WD) without an initial common envelope phase. If compact objects such as double WDs in
triples find themselves in the right part of the parameter space, the above process may trigger large
eccentricities that can lead to grazing interactions or even collisions (recall that the approximation
may break, yielding even larger eccentricities), which may promote Type Ia supernovae (e.g.,
Thompson 2011, Katz & Dong 2012, Hamers et al. 2013, Kushnir et al. 2013, Prodan et al. 2013,
Dong et al. 2015).

5.4. Compact Objects
Within the hierarchical galaxy-formation paradigm and the strong observational evidence that a
high abundance of the local galaxies host supermassive black holes, one expects that major galaxy
mergers should inevitably result in the formation of supermassive black hole binaries or multiples
(e.g., Valtonen 1996, Di Matteo et al. 2005, Hoffman & Loeb 2007, Callegari et al. 2009, Dotti
et al. 2012, Khan et al. 2012, Kulkarni & Loeb 2012). The evolution of these binaries highly
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Figure 24
Retriggering EKL by mass loss. This example produces a high-mass X-ray binary (HMXB) or a supernova impostor. We show (a) the
inner orbit inclination i1, (b) the inner orbit eccentricity (depicted as 1 − e1), (c) the semimajor axis of the inner ( purple) and outer (cyan)
orbit as well as the inner orbit pericenter and the two masses’ disruption distances (see Equation 54 for a popular definition), (d ) the
stellar radii, and finally (e) the masses of all three stars. This calculation includes solving the equations of the octupole level of
approximation, GR for both the inner and outer orbits, and stellar evolution according to single-star evolution (Hurley et al. 2000),
which includes mass loss and stellar inflation. For simplicity the supernova was modeled here as simple mass loss and assumed no kicks.
Tidal evolutions were turned off for illustration purposes. A consequence of the first mass-loss episode and the formation of an NS is
that the initially small ϵM increased. This yields eccentricity excitations leading to Roche limit crossing as the m2 star’s radius inflates.
This may result in an HMXB or even a supernova impostor. The system parameters are set initially as follows: m1 = 11 M⊙, m2 = 10
M⊙, m3 = 5 M⊙, a1 = 100 AU, a2 = 1,300 AU, e1 = 0.001, e2 = 0.6, ω1 = ω2 = 0, and itot = 79◦. These parameters yield initial
ϵM = 0.0034. Naoz et al. (2016) discussed the formation scenario of low-mass X-ray binaries via triple-body evolution similar to the
example illustrated here.
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Figure 25
Diagram of the resulting torus-like configuration from EKL in supermassive black hole binaries. The
particles in a near-polar orbit, with respect to the black hole binary orbit, will undergo large eccentricity and
inclination oscillations. This leads to large eccentricities that will result in either tidal disruption events for
stars (Li et al. 2015) or accretion of dark matter (DM) particles that may orbit the black hole (Naoz & Silk
2014).

depends on the conditions of the host galaxy. Numerical studies of spheroidal gas-poor galaxies
suggest that these binaries can reach about a parsec separation and may stall there (e.g., Begelman
et al. 1980, Milosavljević & Merritt 2001, Yu 2002). The effect of gravitational perturbations of
supermassive black hole binaries on an ambient star cluster has been discussed in length in the
literature (e.g., Blaes et al. 2002; Miller & Hamilton 2002; Wen 2003; Ivanov et al. 2005; Chen
et al. 2009, 2011; Gualandris & Merritt 2009; Freire et al. 2011; Iwasawa et al. 2011; Sesana et al.
2011; Gualandris & Merritt 2012; Madigan & Levin 2012; Meiron & Laor 2013; Antonini &
Merritt 2012; Bode & Wegg 2014; Naoz & Silk 2014; Ransom et al. 2014; Tauris & van den
Heuvel 2014; Wang et al. 2014; Li et al. 2015). In particular, it was suggested that three-body
interactions may play an important role in the growth of black holes at the centers of dense star
clusters by increasing the tidal directions event rate of stars. It was also shown that interactions with
the surrounding stars can either increase or decrease the eccentricity of the supermassive black
hole binaries depending on the fraction of counter-rotating–to–corotating stars. Furthermore,
the presence of supermassive black holes may increase the stellar tidal disruption event rate and
even lead to a torus-like configuration of stars (or dark matter particles) around one of the black
holes (see Figure 25). The supermassive black hole binary can also lead to an eccentric or ejected
population of stars from the cluster.

For a supermassive black hole binary embedded in a dense stellar environment, such as the
one in the Galactic Center, other physical processes may affect the precession of a star around
the primary black hole. Similar to the short-range forces discussed in Section 4, if the extra
precession takes place in an opposite direction to that induced by the EKL mechanism and it
takes place on a shorter timescale, then tquad eccentricity excitations may be suppressed. These
physical processes may include (but are not limited to) precession caused by the stellar poten-
tial, scalar resonant relaxation or reorientation of the orbital plane due to vector resonant re-
laxation (Kocsis & Tremaine 2011, 2015), or Lense-Thirring precession (Merritt et al. 2010,
Merritt & Vasiliev 2012). For the EKL mechanism of supermassive black hole binaries embedded
in a dense stellar environment, Li et al. (2015) found that precession caused by the stellar poten-
tial and GR may have large effects on the dynamics, whereas the other processes (such as tidal
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effects, scalar and vector resonant relaxation, and Lense-Thirring precession) are typically less
important.

A dissipation mechanism that may play an important role when black holes (or other compact
objects) are involved is GW emission. In this scenario, black hole binary high orbital eccentricity
induced by the outer perturber can lead to a more efficient merger rate, due to GW emission (e.g.,
Blaes et al. 2002). GW emission can also lead to the formation of extreme-mass-ratio binaries,
such as supermassive black holes and stellar-mass black holes, or any other test particle, on a tight
orbit (e.g., Bode & Wegg 2014). Considering the dynamical evolution of compact objects in the
presence of an outer perturber, large eccentricities induced by the perturber can lead to a close
approach between the two compact objects such that GW emission decays their orbital separation
(e.g., Miller & Hamilton 2002, Wen 2003, Antonini & Perets 2012, Seto 2013). This perhaps can
lead to a detectable signal using LIGO5 and VIRGO6 (e.g., Wen 2003 and Naoz et al. 2013b, but
see Mandel et al. 2008 and O’Leary et al. 2006). Because GW emission associated with eccentric
orbits is stronger and has a very different spectrum relative to its circular counterparts, it was
suggested that, using the GW information emitted by the close binary, it might be possible to
constrain the mass or distance of the third body (e.g., Galaviz & Brügmann 2011, Yunes et al. 2011).

Recently it was also suggested that black hole–low-mass X-ray binaries (BH-LMXBs) may
form via the EKL mechanism (Naoz et al. 2016). During the dynamical evolution of the triple
system, the EKL mechanism can cause large eccentricity excitations on the LMXB progenitor,
resulting in a BH-LMXB candidate, while skipping the common envelope phase. Interestingly,
a substantial number of close binaries with an accreting compact object, e.g., LMXBs and their
descendants (e.g., millisecond radio pulsars), are known or suspected triples (Grindlay et al. 1988,
Thorsett et al. 1999, Chou & Grindlay 2001, Rasio 2001, Sigurdsson et al. 2003, Zdziarski et al.
2007, Prodan & Murray 2012, Prodan et al. 2015).

6. BEYOND THE THREE-BODY SECULAR APPROXIMATION
There are different channels to consider when going beyond the secular approximation. The first
is to consider the validity of the approximation discussed in Section 3, in other words allowing for
more compact systems (e.g., ϵ > 0.1, Equation 52), which means considering the implications of
having changes in the angular momentum on short timescales compared to the orbital timescale
(e.g., Equation 49). The second is to allow for higher multiples.

In considering compact systems, a popular application of the three-body interaction is the
merger of two WDs to prompt the so-called double degenerate type Ia supernova. Double-
degenerate type Ia supernovae may represent a substantial fraction (if not all) of the type Ia
supernovae. Observational evidence for this may lie in the distribution of times between star for-
mation and the type Ia supernova explosion, usually called the delay-time distribution, that seems
to favor the double-degenerate scenario (e.g., Maoz et al. 2014) or in the lack of hydrogen lines
that are expected in the single-degenerate (WD with a stellar companion) scenario (e.g., Shappee
et al. 2013). There are different theoretical models that address the double-degenerate type Ia
supernova formation. In the context of triple-body interactions, the large eccentricities associated
with the EKL mechanism can lead to double-degenerate type Ia supernovae (e.g., Thompson
2011, Hamers et al. 2013, Prodan et al. 2013). Considering more compact systems, the inner
orbit specific angular momentum is likely to reach almost zero (i.e., an almost radial motion) on
timescales on the order of the inner orbit period (see Section 3), causing the collision of two WDs
and resulting in a type Ia supernova (e.g., Katz & Dong 2012, Kushnir et al. 2013, Dong et al. 2015).

Another interesting astrophysical application for the insight gained in the study of triples is con-
sidering higher multiples. There are, of course, many ways to address high multiples interactions.
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The first is to consider a scattering, short-timescale event, which has been discussed at length in
the literature (e.g., Hut & Bahcall 1983, Rasio & Ford 1996, Chatterjee et al. 2008, Nagasawa et al.
2008, Antognini & Thompson 2016). In a stable system, which does not undergo a scattering event,
the additional fourth (or more) companion can have large effects on the eccentricity and inclination
evolution. In particular it can help in tapping into large parts of the parameter space (e.g., Takeda
et al. 2008, Touma et al. 2009, Pejcha et al. 2013, Boué & Fabrycky 2014a, Hamers et al. 2015)
and affect the spin orbit evolution (e.g., Boué & Fabrycky 2014b, Li et al. 2014c). A consequence
of the latter effect is that circumbinary planets may be misaligned (e.g., Hamers et al. 2016, Martin
et al. 2015, Muñoz & Lai 2015). In the context of the secular approximation, the Gauss averaging
method can be utilized for N number of stable orbits (e.g., Touma et al. 2009). This method is
a phase-averaged calculation for which the gravitational interactions between nonresonant orbits
are equivalent in treating the orbits as massive wires interacting with each other, where the line
density is inversely proportional to the orbital velocity. As explained above, a consequence of the
secular approximation is that the semimajor axes of the wires are constants of motion (e.g., Mur-
ray & Dermott 1999). In general this method can be used to explore different many-body secular
effects, for example, the evolution of a particle disk in the presence of a perturber (Batygin 2012).

7. SUMMARY
The high abundance of hierarchical triple systems in nature motivates the investigation of their
dynamics. Furthermore, this approximation seems to be very useful in addressing a variety of
puzzles and systems that are observed, such as retrograde hot Jupiters, blue stragglers, LMXBs
and HMXBs, compact object binaries, double-degenerate type Ia supernovae, etc. Building on
the physical understanding gained in recent years in this subject motivates us to go beyond the
approximation for an even wider range of applications.

The recent theoretical developments can be summarized by the following:

! The z-component of the angular momentum of the inner and outer orbits (i.e., the nominal√
1 − e2

1,2 cos i1.2) is only conserved if one of the binary members is a test particle and the
outer orbit is axisymmetric (e2 = 0).

! Relaxing any of these assumptions may lead to high-order resonances characterized by large
eccentricity excitations and flips of the orbital orientation as well as chaotic behavior.

! These high-order resonances allow the system to tap into larger parts of the initial parameter
space for which the EKL mechanism is triggered.

! Short-range forces and other physical processes (such as GR and stellar mass loss) can also
retrigger the EKL mechanism for systems that did not exhibit these dynamics in the point–
mass approximation.

The field continues to develop and to go beyond three-body systems and the secular or hier-
archical approximations. These improvements allow for application to, and understanding of, a
larger variety of systems. The intuition and insight that the eccentric Kozai-Lidov mechanism has
provided are utilized for these approaches.
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SUPPLEMENTAL TEXT 1: THE SECULAR EQUATIONS

The full octupole-order equations of motion for the most general case (i.e., relaxing the test

particle and axisymmetric potential approximations) presented in Naoz et al. (2013a) are

reiterated here for completeness. We begin with reminding the reader of the definitions of

a few useful parameters:

C3 = −15
16

k4

4

(m1 + m2)
9

(m1 + m2 + m3)4
m9

3(m1 − m2)

(m1m2)5
L6

1

L3
2G

5
2

= −C2
15
4

ϵM

e2
(67)

where

ϵM =
m1 − m2

m1 + m2

a1

a2

e2

1 − e2
2

(68)

and

A = 4 + 3e2
1 −

5
2
B sin i2tot, (69)

where

B = 2 + 5e2
1 − 7e2

1 cos(2ω1), (70)

and

cos φ = − cos ω1 cos ω2 − cos itot sin ω1 sin ω2. (71)

As shown in Naoz et al. (2013a) elimination of the nodes (i.e., setting Ω1 − Ω2 = π) can

be done as long as one does not conclude that the conjugate z-component of the angular

momenta (H1 and H2) are constant of motion. The partial derivatives with respect to the

other coordinates and momenta are not affected by the substitution Ω1 − Ω2 = π. In that

case, the time evolution of H1 and H2 (and thus i1 and i2) can be derived from the total

angular momentum conservation. The doubly averaged Hamiltonian after eliminating the

nodes:

H(∆h → π) = C2{
(
2 + 3e2

1

) (
3 cos2 itot − 1

)
(72)

+ 15e2
1 sin2 itot cos(2ω1)}

+ C3e1e2{A cos φ

+ 10 cos itot sin2 itot(1 − e2
1) sin ω1 sin ω2}.

The time evolution of the argument of periapse for the inner and outer orbits are given

by:

ω̇1 = 6C2

{
1

G1
[4 cos2 itot + (5 cos(2ω1) − 1) (73)

× (1 − e2
1 − cos2 itot)] +

cos itot
G2

[2 + e2
1(3 − 5 cos(2ω1))]

}

− C3e2

{
e1

(
1

G2
+

cos itot
G1

)

× [sin ω1 sin ω2(10(3 cos2 itot − 1)(1 − e2
1) + A)

− 5B cos itot cos φ] − 1 − e2
1

e1G1
× [sin ω1 sin ω2

6XSSOHPHQWDO�0DWHULDO��$QQX��5HY��$VWURQ��$VWURSK\V��������������±��
GRL����������DQQXUHY�DVWUR��������������
7KH�(FFHQWULF�.R]DL�/LGRY�(IIHFW�DQG�,WV�$SSOLFDWLRQV
1DR]�



× 10 cos itot sin i2tot(1 − 3e2
1)

+ cos φ(3A − 10 cos i2tot + 2)]

}
,

and

ω̇2 = 3C2

{
2 cos itot

G1
[2 + e2

1(3 − 5 cos(2ω1))] (74)

+
1

G2
[4 + 6e2

1 + (5 cos2 itot − 3)(2 + e2
1[3 − 5 cos(2ω1)])

}

+ C3e1

{
sin ω1 sin ω2

(
4e2

2 + 1
e2G2

10 cos itot sin2 itot(1 − e2
1)

− e2

(
1

G1
+

cos itot
G2

)
[A + 10(3 cos2 itot − 1)(1 − e2

1)]

)

+ cos φ

[
5B cos itote2

(
1

G1
+

cos itot
G2

)
+

4e2
2 + 1

e2G2
A

]}

The time evolution of the longitude of ascending nodes is given by:

Ω̇1 = − 3C2

G1 sin i1

(
2 + 3e2

1 − 5e2
1 cos (2ω1)

)
sin (2itot) (75)

− C3e1e2[5B cos itot cos φ

− A sin ω1 sin ω2 + 10(1 − 3 cos2 itot)

× (1 − e2
1) sin ω1 sin ω2]

sin itot
G1 sin i1

,

where in the last part we have used again the law of sines for which sin i1 = G2 sin itot/Gtot.

The evolution of the longitude of ascending nodes for the outer orbit can be easily obtained

using:

Ω̇2 = Ω̇1. (76)

The evolution of the inner and outer eccentricities is:

ė1 = C2
1 − e2

1

G1
[30e1 sin2 itot sin(2ω1)] (77)

+ C3e2
1 − e2

1

G1
[35 cos φ sin2 itote

2
1 sin(2ω1)

− 10 cos itot sin2 itot cos ω1 sin ω2(1 − e2
1)

− A(sin ω1 cos ω2 − cos itot cos ω1 sin ω2)],

and

ė2 = −C3e1
1 − e2

2

G2
[10 cos (itot) sin2 (itot) (1 − e2

1) sin ω1 cos ω2

+ A(cos ω1 sin ω2 − cos(itot) sin ω1 cos ω2)]. (78)

The angular momenta derivatives of the inner and outer orbits as a function of time can be

easily calculated, where for the inner orbit we write:

Ġ1 = −C230e2
1 sin(2ω1) sin2(itot) + C3e1e2( (79)



− 35e2
1 sin2(itot) sin(2ω1) cos φ + A[sin ω1 cos ω2

− cos(itot) cos ω1 sin ω2]

+ 10 cos(itot) sin2(itot)[1 − e2
1] cos ω1 sin ω2) ,

and for the outer orbit (where the quadrupole term is zero)

Ġ2 = C3e1e2[A{cos ω1 sin ω2 − cos(itot) sin ω1 cos ω2}
+ 10 cos(itot) sin2(itot)[1 − e2

1] sin ω1 cos ω2]. (80)

Also the z-component of the inner orbit angular momentum is

Ḣ1 =
G1

Gtot
Ġ1 −

G2

Gtot
Ġ2, (81)

where using the law of sines we write:

Ḣ1 =
sin i2
sin itot

Ġ1 −
sin i1
sin itot

Ġ2. (82)

Because the total angular momentum is conserved Gtot = Const. = H1 +H2 the outer orbit

z-component time evolution is simply Ḣ2 = −Ḣ1. The inclinations equation of motion is

˙(cos i1) =
Ḣ1

G1
− Ġ1

G1
cos i1, (83)

and

˙(cos i2) =
Ḣ2

G2
− Ġ2

G2
cos i2. (84)



SUPPLEMENTAL TEXT 2: STATIC TIDES EQUATIONS

Tidal interaction considered in this review are limited to the inner orbit members equilib-

rium and static tides formalism (e.g., Hut 1980, Eggleton et al. 1998, Kiseleva et al. 1998,

Eggleton & Kiseleva-Eggleton 2001). A compact representation of the tidal interactions

equation can be found when using the Laplace- Runge-Lenz vector system. In this system

the three vector base is composed from the inner orbit eccentricity vector e1 the specific

angular momentum vector

J1 =
√

2(m1+ m2)a1(1 − e2
1)Ĵ1= G1(m1+ m2)/(m1m2) . (85)

The vector q̂ = Ĵ1 × ê1 completes the right-hand triad of unit vectors (q̂, Ĵ1, ê1). Each of

the inner member masses have a spin vector Ωs1 and Ωs2, respectively. The time evolution

equations are (where subscript 1 and 2 refer to masses m1 and m2):

1
e1

de1

dt
= (Z1 + Z2)q̂ − (Y1 + Y2)Ĵ1 − (V1 + V2)ê1 , (86)

1
J1

dJ1

dt
= −(X1 + X2)q̂ − (W1 + W2)Ĵ1 + (Y1 + Y2)ê1 , (87)

I1
dΩs1

dt
= µJ1(X1q̂ + W1Ĵ1 − Y1ê1) , (88)

I2
dΩs2

dt
= µJ1(X2q̂ + W2Ĵ1 − Y2ê1) , (89)

where µ = m1m2/(m1 + m2) is the reduced mass, I1 (I2) is the moment of inertia of mass

m1 (m2). The vector (X, Y, Z) is the angular velocity of the (q̂, Ĵ1, ê1) frame and can be

easily related to the Delaunay’s elements in the invariable plan as (Eggleton et al. 1998):

X =
di1
dt

cos ω1 +
dΩ1

dt
sin ω1 sin i1 , (90)

Y = −di1
dt

sin ω1 +
dΩ1

dt
cos ω1 sin i1 , (91)

Z =
dω1

dt
+

dΩ1

dt
cos i1 (92)

This set of equations gives the precession rate due to tides dω1/dt as well as how the other

Delaunay’s elements vary with time. We note that these equations (Equations 86–89) are

identical to that of Eggleton & Kiseleva-Eggleton (2001) and Fabrycky & Tremaine (2007),

up to the gravitational influence of the third body which they described by the tensor S.

In our formalism its redundant. The functional form of W, V, X, Y and Z were given in

Eggleton & Kiseleva-Eggleton (2001) and are simply:

V1 =
9

tF1

(
1 + 15e2

1/4 + 15e4
1/8 + 5e6

1/64

(1 − e2
1)

13/2
− 11Ωs1,J

18n

1 + 3e2
1/2 + e4

1/8

(1 − e2
1)

5

)
, (93)

W1 =
1

tF1

(
1 + 15e2

1/2 + 45e4
1/8 + 5e6

1/16

(1 − e2
1)

13/2
− 11Ωs1,J

n

1 + 3e2
1 + 3e4

1/8

(1 − e2
1)

5

)
, (94)

X1 = −m2k1R
5
1

µna5
1

Ωs1,JΩs1,e

(1 − e2
1)

2
− Ωs1,q

2ntF1

1 + 9e2
1/2 + 5e4

1/8

(1 − e2
1)

5
, (95)

Y1 = −m2k1R
5
1

µna5
1

Ωs1,JΩs1,q

(1 − e2
1)

2
+

Ωs1,e

2ntF1

1 + 3e2
1/2 + e4

1/8

(1 − e2
1)

5
, (96)

Z1 =
m2k1R

5
1

µna5
1

(
2Ω2

s1,J − Ωs1,q2 − Ω2
1s,e

2(1 − e2
1)

2
+

15k2m2

a3
1

1 + 3e2
1/2 + e1/8

(1 − e2
1)

5

)
, (97)

6XSSOHPHQWDO�0DWHULDO��$QQX��5HY��$VWURQ��$VWURSK\V��������������±��
GRL����������DQQXUHY�DVWUR��������������
7KH�(FFHQWULF�.R]DL�/LGRY�(IIHFW�DQG�,WV�$SSOLFDWLRQV
1DR]�



where the expression for mass m2 can be easily found by replacing subscript 1 with 2. The

mean motion is

n =
2π
P1

=

√
k2(m1 + m2)

a3
1

. (98)

also, k1 is classical apsidal motion constant, which is a measure of quadrupolar deformability,

and related to the Love parameter of mass m1 by kL = 2k1. It also related to Eggleton &

Kiseleva-Eggleton (2001) coefficient QE by

k1 =
1
2

QE

1 − QE
. (99)

The tidal friction timescale can be expressed in terms of the viscous timescale tV 1 (which

is assume dot be constant in the tides applications in this review):

tF1 =
tV 1

9

(
a1

R1

)8 m2
1

(m1 + m2)m2

1
(1 + 2k1)2

, (100)

and similar equation for tF2 can be found by replacing 1 with 2. This formalism describes

viscosity that causes the tidal bulge to lag the instantaneous direction of the companion by

a constant angle 1/(2Q) at constant time interval. The quality factor Q can be expressed as

a function of viscous timescale as well by (e.g., Fabrycky & Tremaine 2007, Hansen 2010)

Q =
4
3

k1

(1 + 2k1)2
k2m1

R3
1

tV 1

n
. (101)
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